DOI QR코드

DOI QR Code

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • 투고 : 2023.11.27
  • 심사 : 2024.02.26
  • 발행 : 2024.07.25

초록

This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2103079).

참고문헌

  1. T. Saito, J. Yamashita, Y. Ishiwatari, Y. Oka (Eds.), Advances in Light Water Reactor Technologies, Springer Sci. Bus. Media, 2010.
  2. KEPCO, In-Vessel Retention Workshop on Severe Accident Management of Korea Next Generation Reactor", KEPCO, 1998. Published by.
  3. R.J. Park, D. Son, H.S. Kang, S.M. An, K.S. Ha, Development of IVR-ERVC evaluation method and its application to the SMART, Ann. Nucl. Eng. 161 (2021) 108463.
  4. J. Jung, S.M. An, K.S. Ha, H.Y. Kim, Evaluation of heat-flux distribution at the inner and outer reactor vessel walls under the in-vessel retention through external reactor vessel cooling condition, Nucl. Eng. Technol. 47 (1) (2015) 66-73. https://doi.org/10.1016/j.net.2014.11.005
  5. J.L. Rempe, K.Y. Suh, F.B. Cheung, S.B. Kim, In-vessel Retention Strategy for High-Power Reactors Final Report, INEEL/EXT-04-02561, Idaho National Laboratory Report, January 2005.
  6. Y. Jin, W. Xu, X. Liu, X. Cheng, In-and ex-vessel coupled analysis of IVR-ERVC phenomenon for large scale PWR, Ann. Nucl. Eng. 80 (2015) 322-337. https://doi.org/10.1016/j.anucene.2015.01.041
  7. K. Lim, Y. Cho, S. Whang, H.S. Park, Evaluation of an IVR-ERVC strategy for a high power reactor using MELCOR 2.1, Ann. Nucl. Eng. 109 (2017) 337-349. https://doi.org/10.1016/j.anucene.2017.05.045
  8. Y. Luo, X. Liu, X. Cheng, IVR-ERVC study of 1700 MW class PWR based on MAAP simulation and coupled analysis, Ann. Nucl. Eng. 126 (2019) 1-9. https://doi.org/10.1016/j.anucene.2018.11.003
  9. M.A. Amidu, Y. Addad, J.I. Lee, D.H. Kam, Y.H. Jeong, Investigation of the pressure vessel lower head potential failure under IVR-ERVC condition during a severe accident scenario in APR1400 reactors, Nucl. Eng. Des. 376 (2021) 111107.
  10. L. Carenini, F. Fichot, N. Bakouta, A. Filippov, R. Le Tellier, L. Viot, I. Melnikov, P. Pandazis, Main outcomes from the IVR code benchmark performed in the European IVMR project, Ann. Nucl. Eng. 146 (2020) 107612.
  11. Y.J. Lee, J.M. Kim, H.M. Kim, D.H. Lee, C.K. Chung, Structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident, J. Comput. Struct. Eng. Inst. Korea. 27 (3) (2014) 191-198. https://doi.org/10.7734/COSEIK.2014.27.3.191
  12. T.H. Kim, S.H. Kim, Y.S. Chang, Structural assessment of reactor pressure vessel under multi-layered corium formation conditions, Nucl. Eng. Technol. 47 (3) (2015) 351-361. https://doi.org/10.1016/j.net.2014.12.017
  13. J.F. Mao, J.W. Zhu, S.Y. Bao, L.J. Luo, Z.L. Gao, Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Pres. Ves. Pip. 139 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009
  14. T.H. Lee, Y.J. Oh, I.S. Hwang, Bottom-mounted nozzle failure modes of a nuclear reactor pressure vessel under severe accident conditions, Key Eng. Mater. 297 (2005) 1652-1658. https://doi.org/10.4028/www.scientific.net/KEM.297-300.1652
  15. F.W. Brust, R. Iyengar, M. Benson, H. Rathbun, Severe accident condition modeling in PWR environment: creep rupture modeling, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 55638 (2013) V01AT01A054.
  16. J. Arndt, H. Grebner, J. Sievers, Failure assessment methodologies for pressure retaining components under severe accident loading, Sci. Technol. Nucl. Install. 2012 (2012) 487371.
  17. V. Koundy, F. Fichot, H.G. Willschuetz, E. Altstadt, L. Nicolas, J.S. Lamy, L. Flandi, Progress on PWR lower head failure predictive models, Nucl. Eng. Des. 238 (9) (2008) 2420-2429. https://doi.org/10.1016/j.nucengdes.2008.03.004
  18. L. Nicolas, M. Durin, V. Koundy, E. Mathet, A. Bucalossi, P. Eisert, J. Sievers, L. Humphries, J. Smith, V. Pistora, K. Ikonen, Results of benchmark calculations based on OLHF-1 test, Nucl. Eng. Des. 223 (3) (2003) 263-277. https://doi.org/10.1016/S0029-5493(03)00064-5
  19. P. Gao, H. Yang, B. Zhang, J. Shan, Development of PWR lower head failure model for severe accident analysis, Nucl. Eng. Des. 403 (2023) 112142.
  20. T.Y. Chu, M.M. Pilch, J.H. Bentz, J.S. Ludwigsen, W.Y. Lu, L.L. Humphries, Lower Head Failure Experiments and Analyses, vol. 5582, NUREG/CR-, 1998, pp. 98-2047.
  21. E.K. Park, J.S. Kim, J.W. Park, Y.J. Kim, Y. Takahashi, K. Lim, Failure simulation of nuclear pressure vessel under severe accident conditions: Part I-Material constitutive modelling, Nucl. Eng. Technol. 55 (11) (2023) 4146-4158. https://doi.org/10.1016/j.net.2023.07.036
  22. Y. Takahashi, Unified constitutive modeling of three alloys under a wide range of temperature, Int. J. Pres. Ves. Pip. 172 (2019) 166-179. https://doi.org/10.1016/j.ijpvp.2019.03.018
  23. Y. Takahashi, Development of accurate inelastic analysis models for materials constituting penetrations in reactor vessel, Denryoku Chuo Kenkyusho Hokoku (2015) 1-4.
  24. E.K. Park, J.W. Park, Y.J. Kim, Y. Takahashi, K. Lim, E.S. Kim, Failure simulation of nuclear pressure vessel under severe accident conditions: Part II-Failure modeling and comparison with OLHF experiment, Nucl. Eng. Technol. 55 (11) (2023) 4134-4145. https://doi.org/10.1016/j.net.2023.07.035
  25. L.L. Humphries, T.Y. Chu, J. Bentz, R. Simpson, C. Hanks, W. Lu, B. Antoun, C. Robino, J. Puskar, P. Mongabure, OECD Lower Head Failure Project Final Report, Sandia National Laboratories, Albuquerque, NM, 2002 87185, 1139.
  26. K. Lim, Y. Cho, Y.H. Seo, J.S. Lee, B.J. Kim, I.C. Ryu, Code-to-code Comparison between Severe Accident Integral Codes for the Analysis of the Severe Accident Progress of a High Power Reactor, KINS/RR-1598, Korea Institutive of Nuclear Safety, 2016.
  27. ABAQUS, Abaqus User's Manual Version 2019, Dassault Systemes Simulia Corp. Provid. RI, USA, 2019.
  28. J.L. Rempe, S. a Chavez, G.L. Thinnes, Light Water Reactor Lower Head Failure Analysis (No. NUREG/CR-5642; EGG-2618), Nuclear Regulatory Commission, Washington, DC (United States), 1993.
  29. J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solid. 17 (3) (1969) 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  30. International Atomic Energy Agency (IAEA), Status Report 83, Advanced Power Rector 1400 Mwe (APR1400), 2011.