DOI QR코드

DOI QR Code

Characterization of glasses composed of PbO, ZnO, MgO, and B2O3 in terms of their structural, optical, and gamma ray shielding properties

  • Aljawhara H. Almuqrin (Department of Physics, College of Science, Princess Nourah bint Abdulrahman University) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • Ashok Kumar (University College) ;
  • U. Rilwan (Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University)
  • Received : 2024.01.17
  • Accepted : 2024.02.24
  • Published : 2024.07.25

Abstract

The amorphous glasses containing PbO, ZnO, MgO, and B2O3 have been fabricated using the melt quenching technique. The structural properties have been analysed using the Fourier-transform infrared (FTIR) and Raman spectroscopy. Derivative of Absorption Spectra Fitting (DASF) method have been used to estimate the band gap energy from the UV-Vis absorption data which decreases from 3.02 eV to 2.66 eV with increasing the concentration of the PbO.The four glass samples 0.284 and 0.826 MeV showed unique variations in terms of gamma attenuation ability. LZMB4 glass sample proved to be the mist effective in terms of shielding of gamma radiation as it requires little distance compared to LZMB3, LZMB2 and LZMB1 to attenuate. RPE revealed a raise with increase in the thickness of the material and reduces as the energy raises. TF is superior in LZMB1 compared to LZMB2, LZMB3 and LZMB4, confirming that, LZMB4 will attenuate better. The ZEff of the materials was seen falling as the energy increases, confirming that the linear attenuation coefficient of the glass materials decreases when the energy is increased. The results confirmed that, glass material LZMB4 is the best option especially for gamma radiation shielding applications compared to LZMB3, followed by LZMB2, then LZMB1.

Keywords

Acknowledgement

The authors express their gratitude to the Princess Nourah bint Abdulrahman University Researchers, Supporting Project Number (PNURSP2024R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. Hanan Al-Ghamdi, Ashok Kumar, J.F.M. Jecong, Aljawhara H. Almuqrin, D. I. Tishkevich, M.I. Sayyed, Optical and gamma ray shielding behavior of PbO-B2O3-CuO-CaO Glasses, J. Mater. Res. Technol. 18 (2022) 2494-2505, https://doi.org/10.1016/j.jmrt.2022.03.120.
  2. S.M. Tajudin, A.H.A. Sabri, M.Z. Abdul Aziz, S.F. Olukotun, B.M. Ojo, M.K. Fasasi, Feasibility of clay-shielding material for low-energy photons (gamma/X), Nucl. Eng. Technol. 51 (2019) 1333-1337, https://doi.org/10.1016/j.net.2019.04.020 (South Korea).
  3. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010, https://doi.org/10.1016/j.net.2020.12.012.
  4. Vijay L. Gurav, Rajesh A. Samant, Satish B. Manjare, Urmila K. Patil, Sana R. Solkar, Shivani S. Moghe, Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity, Asian Journal of Nanoscience and Materials 3 (2) (2020) 115-120, 26655./AJNANOMAT.2020.2.3.
  5. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, F.O. Balogun, M.I. Sayyed, S.M. Tajudin, E.I. Obiajunwa, M.K. Fasasi, The effect of incorporated recycled low-density polyethylene (LDPE) on the fast neutron shielding behaviour (FNSB) of clay matrix using MCNP and PHITS Monte Carlo codes, Journal of Radiation Physics and Chemistry 182 (2021) 109351-109357, https://doi.org/10.1016/j.radphyschem.2021.109351(UnitedKingdom.
  6. A. As,kin, M.I. Sayyed, Amandeep Sharma, M. Dal, R. El-Mallawany, M.R. Kacal, Investigation ofthe gamma ray shielding parameters of (100-x) [0.5Li2O-0.1B2O3-0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non Cryst. Solids 521 (2019) 119489, https://doi.org/10.1016/j.jnoncrysol.2019.119489.
  7. A.H. Aminordin Sabri, M.Z. Abdul Aziz, S.F. Olukotun, F. Tabbakh, S.M. Tajudin, Study on the shielding materials for low-energy gamma sources, IOP Conf. Ser. Mater. Sci. Eng. 785 (2020) (2020) 012007, https://doi.org/10.1088/1757-899X/785/1/012007 (United Kingdom).
  8. M.I. Sayyed, Hakan Akyildirim, M.S. Al-Buriahi, Eloic Lacomme, Rachid Ayad, Giovanni Bonvicini, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO, Appl. Phys. A. 126 (2020) 88, https://doi.org/10.1007/s00339-019-3265-6.
  9. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M.C. Ersundu, A.E. Ersundu, I. V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem. 145 (2018) 26-33, https://doi.org/10.1016/j.radphyschem.2017.12.010.
  10. S.F. Olukotun, K.S. Mann, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, A. Joshi, H. O. Tekin, M.I. Sayyed, M.K. Fasasi, F.A. Balogun, T. Korkut, Neutron-shielding behaviour investigations of some clay-materials, Nucl. Eng. Technol. 51 (2019) 1444-1450, https://doi.org/10.1016/j.net.2019.03.019(SouthKorea.
  11. Qiuling Chen, K.A Naseer, K. Marimuthu, P. Suthanthira Kumar, Baoji Miao, K. A. Mahmoud, M.I. Sayyed, Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems, J. Aust. Ceram. Soc. 57 (2021) 275-286, https://doi.org/10.1007/s41779-020-00531-8.
  12. S.F. Olukotun, M.I. Sayyed, O.F. Oladejo, N. Almousa, S.A. Adeojo, E.O. Ajoge, S. T. Gbenu, M.K. Fasasi, Computation of gamma buildup factors and heavy ions penetrating depths in clay composite materials using Phy-X/PSD, EXABCal and SRIM Codes, Coatings 12 (2022) (2022), https://doi.org/10.3390/coatings12101512 (Switzerland).
  13. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, M. Kaky Kawa, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Composites, Part B 165 (2019) 636-647. https://doi.org/10.1016/j.compositesb.2019.02.022
  14. Heba Jamal Alasali, M.I. Sayyed, Studies of gamma radiation attenuation properties of silica‑based commercial glasses utilized in Jordanian dwellings, Opt. Quant. Electron. 56 (2024) 391, https://doi.org/10.1007/s11082-023-05941-z.
  15. Soheila Ghasemi, Fatemeh Badri, Hadieh Rahbar Kafshboran, Pd catalyst supported thermo-responsive modified poly(N-isopropylacrylamide) grafted Fe3O4@CQD@Si in heck coupling reaction, Asian Journal of Green Chemistry 8 (1) (2024) 39-56, https://doi.org/10.48309/ajgc.2024.408188.1401.
  16. Haytham A. Ayoub, Khairy Mohamed, Farouk A. Rashwan, Hanan F. Abdel-Hafez, Synthesis of calcium silicate hydrate from chicken eggshells and combined joint effect with nervous system insecticides, Asian Journal of Green Chemistry 6 (2) (2022) 103-111, https://doi.org/10.22034/ajgc.2022.2.1.
  17. Hurieh Mohammadzadeh, Roya Roohibakhsh, Hamid Reza Rezaie, An investigation on sintering behavior of nanostructured Cu-10, 20 wt. % Ni alloy powders, Asian Journal of Nanoscience and Materials 4 (2) (2021) 95-112, https://doi.org/10.26655/AJNANOMAT.2021.2.1.
  18. Fatemeh Banifatemeh, Polymerization of graphite and carbon compounds by aldol condensation as anti-corrosion coating, Asian Journal of Green Chemistry 7 (1) (2023) 25-38, https://doi.org/10.22034/ajgc.2023.1.4.
  19. Mohammad Reza Jalali Sarvestani, The effect of doping graphene with silicon on the adsorption of cadmium(II): theoretical investigations, Asian Journal of Nanoscience and Materials 3 (4) (2020) 280-290, https://doi.org/10.26655/AJNANOMAT.2020.4.2.
  20. Ashraf Heidaripour, Fateme Salmani, Study of PbS quantum dots (QDs) and proposing Pb@PbS-QD@CdSe for new generation of LEDs, Asian Journal of Green Chemistry 8 (1) (2024) 15-24, https://doi.org/10.48309/ajgc.2024.406146.1398.
  21. Yaghoub Ahmadyousefi, A brief overview of plant-derived chemotherapeutic agents for cancer therapy, Asian Journal of Green Chemistry 7 (3) (2023) 175-179, https://doi.org/10.22034/ajgc.2023.388922.1375.
  22. Yaghoub Ahmadyousefi, Bacteria-derived chemotherapeutic agents for cancer therapy: a brief overview, Asian Journal of Green Chemistry 7 (4) (2023) 223-228, https://doi.org/10.22034/ajgc.2023.388927.1376.
  23. Jude N. Udeh, Agnes C. Nkele, Raphael M. Obodo, Innocent C. Nwodo, Chinedu P. Chime, Assumpta C. Nwanya, Maaza Malik, Fabian I. Ezema, Investigating the properties of cobalt phosphate nanoparticles synthesized by co-precipitation method, Asian Journal of Nanoscience and Materials 5 (1) (2022) 22-35, https://doi.org/10.26655/AJNANOMAT.2022.1.3.
  24. Abolfazl Khodadadi, Mohammad Rahim Talebtash, Investigation and synthesis of Fe doped Al2O3 nanoparticles by Co-precipitation and sol gel methods, Asian Journal of Nanoscience and Materials 5 (1) (2022) 36-47, https://doi.org/10.26655/AJNANOMAT.2022.1.4.
  25. Dalal A. Aloraini , Ashok Kumar, Aljawhara H. Almuqrin and Mohammad Ibrahim Abualsayed, An exploration of the physical, optical, mechanical, and radiation shielding properties of PbO-MgO-ZnO-B2O3 glasses, Open Chem., https://doi.org/10.1515/chem-2023-0104.
  26. Dariush Souri, Zahra Esmaeili Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, Appl. Phys. B 119 (2015) 273-279. https://doi.org/10.1007/s00340-015-6053-9
  27. B.M. Alotaibi, M.I. Sayyed, Ashok Kumar, Mohammed Alotiby, K.A. Mahmoud, Haifa A. Al-Yousef, N.A.M. Alsaif, Y. Al-Hadeethi, Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties, European Physical Journal Plus 136 (2021) 468.
  28. Aljawhara H. Almuqrin, M.I. Sayyed, S. Hashim, Ashok Kumar, Exploring the impact of PbO/CdO composition on the structural, optical, and gamma ray shielding properties of dense PbO-TeO2-CdO glasses, Opt. Mater. 138 (2023) 113698.
  29. OzgurFirat Ozpolat ErdemSakar, M.I. BunyaminAlim, Sayyed, Murat Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 108496.
  30. Sung-Hung Lan, Chin-Tung Lee, Yi-Sheng Lai, Chien-Chon Chen, Hsi-Wen Yang, The relationship between the structure and thermal properties of Bi2O3-ZnO-B2O3 glass system, Advances in Condenced Matter Physics 2321558 (2021), https://doi.org/10.1155/2021/2321558.
  31. Hanan Al-Ghamdi, Aljawhara H. Almuqrin, M.I. Sayyed, Ashok Kumar, The physical, structural and the gamma ray shielding effectiveness of the novel Li2O-K2O-B2O3-TeO2 glasses, Results Phys. 29 (2021) 104726.
  32. S. Mohan, S. Kaur, P. Kaur, D.P. Singh, Spectroscopic investigations of Sm3+-doped lead alumino-borate glasses containing zinc, lithium and barium oxides, J. Alloys Compd. 763 (2018) 486-495.
  33. M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2TiO2-Li2B4O7 glass system, J. Alloys Compd. 710 (2017) 312-322. https://doi.org/10.1016/j.jallcom.2017.03.192
  34. A.K. Hassan, L. Borjesson, L.M. Torell, The boson peak in glass formers of increasing fragility, J. Non-Cryst. Solids 172-174 (1994) 154-160. https://doi.org/10.1016/0022-3093(94)90427-8
  35. W.L. Konijnendijk, H. Verweij, Structural aspects of vitreous PbO.2B2O3 studied by Raman scattering, J. Am. Ceram. Soc. 59 (1976) 459-461. https://doi.org/10.1111/j.1151-2916.1976.tb09526.x
  36. M. Farouk, Effect of Co2+ ions on the ligand field, optical, and structural properties of ZnLiB glasses, Optik 140 (2017) 186-196. https://doi.org/10.1016/j.ijleo.2017.04.042
  37. A.M. Azhra, C.Y. Zahra, DSC and Raman studies of lead borate and lead silicate glasses, J. Non-Cryst. Solids 155 (1993) 45-55. https://doi.org/10.1016/0022-3093(93)90470-I
  38. N.C.A. de Sousa, M.T. de Araujo, C. Jacinto, M.V.D. Vermelho, N.O. Dantas, C. C. Santos, I. Guedes, The role of TiO2 in the B2O3-Na2O-PbO-Al2O3 glass system, J. Solid State Chem. 184 (2011) 3062-3065. https://doi.org/10.1016/j.jssc.2011.09.011
  39. N. Mary, M. Rebours, E. Castel, S. Vaishnav, W. Deng, A.M.T. Bell, F. Clegg, B. L. Allsopp, A. Scrimshire, P.A. Bingham, Enhanced thermal stability of high-bismuth borate glasses by addition of iron, J. Alloys Compd. 500 (2018) 149-157.
  40. G. Sangeetha, K.C. Sekhar, M.N. Chary, Md Shareefuddin, Influence of magnesium oxide on the physical and spectroscopic properties of manganese doped sodium tetra borate glasses, Optik 259 (2022) 168952.
  41. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses: 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem. 91 (1987) 1073-1079. https://doi.org/10.1021/j100289a014
  42. Y.B. Saddeek, K.A. Aly, KhS. Shaaban, Atif Mossad Ali, M.A. Sayed, Elastic, optical and structural features of wide range of CdO- Na2B4O7 glasses, Mater. Res. Express 5 (2018) 065204.
  43. L. Balachander, G. Ramadevudu, Md Shareefuddin, R. Sayanna, Y.C. Venudhar, IR analysis of borate glasses containing three alkali oxides, Sci. Asia 39 (2013) 278.
  44. H.A. El-Batal, F.A. Khalifa, M.A. Azooz, Gamma ray interaction, crystallization and infrared absorption spectra of some glasses and glass-ceramics from the system Li2O.B2O3.Al2O3, Indian J. Pure Appl. Phys. 39 (2001) 565-573.
  45. H.B. Pan, X.L. Zhao, X. Zhang, et al., Strontium borate glass: potential biomaterial for bone regeneration, J. R. Soc. Interface 7 (2010) 1025-1031. https://doi.org/10.1098/rsif.2009.0504
  46. S. Rada, T. Ristoiu, M. Rada, I. Coroiu, V. Maties, E. Culea, Towards modeling gadolinium-lead-borate glasses, Mater. Res. Bull. 45 (2010) 69-73. https://doi.org/10.1016/j.materresbull.2009.08.021
  47. K. Kotkova, H. Ticha, L. Tichy, Raman studies and optical properties of some (PbO)x(Bi2O3)0.2(B2O3)0.8-x glasses, J. Raman Spectrosc. 39 (2008) 1219-1226. https://doi.org/10.1002/jrs.1969
  48. J. Leciejewicz, Neutron-diffraction study of orthorhombic lead monoxide, Acta Crystallogr. 14 (1961) 66.
  49. Avadhesh Kumar Yadav, Prabhakar Singh, A review of structure of oxide glasses by Raman spectroscopy, RSC Adv. 5 (2015) 67583-67609. https://doi.org/10.1039/C5RA13043C
  50. M. Ganguli, K.J. Rao, Structural role of PbO in Li2O-PbO-B2O3 glasses, J. Solid State Chem. 145 (1999) 65-76. https://doi.org/10.1006/jssc.1999.8221
  51. G. Padmaja, P. Kistaiah, Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect, J. Phys. Chem. A 113 (2009) 2397-2404. https://doi.org/10.1021/jp809318e
  52. A.A. Kharlamov, R.M. Almeida, J. Heo, Vibrational spectra and structure of heavy metal oxide glasses, J. Non-Crys. Solid. 202 (1996) 233-240. https://doi.org/10.1016/0022-3093(96)00192-5
  53. Feng He, Zijun He, Junlin Xie, Yuhui Li, IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system, Am. J. Anal. Chem. 5 (2014) 1142-1150. https://doi.org/10.4236/ajac.2014.516121
  54. Al-B.F.A. Mohammed, G. Lakshminarayana, S.O. Baki, M.K. Halimah, I.V. Kityk, M. A. Mahdi, Structural, thermal, optical and dielectric studies of Dy3+: B2O3-ZnO-PbO- Na2O-CaO glasses for white LEDs application, Opt. Mater. 73 (2017) 686-694. https://doi.org/10.1016/j.optmat.2017.09.030
  55. Jamelah S. Al-Otaibi, Aljawhara H. Almuqrin, M.I. Sayyed, Ashok Kumar, Multifaceted analysis of PbO-Bi2O3-ZnO-B2O3 glasses: unveiling structural, Optical, and gamma-ray shielding behaviour, J. Mater. Sci. Mater. Electron. 34 (2023) 1721, https://doi.org/10.1007/s10854-023-11166-3.
  56. M.I.Sayyed, PbO-PbF2-B2O3-SiO2 glasses: Exploring the impact of PbF2 in modulating radiation shielding characteristics, Silicon https://doi.org/10.1007/s12633-023-02764-1.