DOI QR코드

DOI QR Code

Design of proton-beam degrader for high-purity 89Zr production

  • 투고 : 2023.05.15
  • 심사 : 2024.02.14
  • 발행 : 2024.07.25

초록

This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea Customs Service and Ministry of Science and ICT (NRF-2021M3I1A1097913). Support also was received from the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) in the form of financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (2004024-0322-CG100). Further support was received from the Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of the Interior and Safety (No. 20014778). This research was a part of the project titled 'Development of Smart Processing Technology for Sea Foods', funded by the Ministry of Oceans and Fisheries, Korea.

참고문헌

  1. P.W. Miller, N.J. Long, R. Vilar, A.D. Gee, Synthesis of 11C, 18F, 15O, and13N radiolabels for positron emission tomography, Angew. Chem. 47 (47) (2008) 8998-9033, https://doi.org/10.1002/anie.200800222.
  2. J. Yoon, B. Park, E. Ryu, Y. An, S. Lee, Current perspectives on 89Zr-PET imaging, Int. J. Mol. Sci. 21 (12) (2020) 4309, https://doi.org/10.3390/ijms21124309.
  3. H.M. Omara, K.F. Hassan, S.A. Kandil, F.E. Hegazy, Z. Saleh, Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr, Radiochim. Acta 97 (9) (2009), https://doi.org/10.1524/ract.2009.1645.
  4. J.M. Link, K.A. Krohn, J.F. Eary, 89Zr for antibody labeling and positron emission tomography, J. Label. Compd. Radiopharm. 23 (1986) 1297-1298. https://ohsu.pure.elsevier.com/en/publications/89zr-for-antibody-labeling-and-positron-emission-tomography.
  5. S.W. Burchiel, B.A. Rhodes, Radioimmunoimaging and Radioimmunotherapy, Elsevier Publishing Company, 1983.
  6. Y. Tang, S. Li, Y. Yang, W. Chen, H. Wei, G. Wang, J. Yang, J. Liao, S. Luo, N. Liu, A simple and convenient method for production of 89Zr with high purity, Appl. Radiat. Isot. 118 (2016) 326-330, https://doi.org/10.1016/j.apradiso.2016.09.024.
  7. A. Kasbollah, P. Eu, S. Cowell, P. Deb, Review on production of 89Zr in a medical cyclotron for PET radio-pharmaceuticals, J. Nucl. Med. Technol. 41 (1) (2013) 35-41, https://doi.org/10.2967/jnmt.112.111377.
  8. A.M. Dabkowski, K. Probst, C. Marshall, Cyclotron production for the radiometal Zirconium-89 with an IBA cyclone 18/9 and COSTIS solid target system (STS), AIP Conf. Proc. 1509 (2012) 108-113, https://doi.org/10.1063/1.4773950.
  9. M. Sadeghi, M. Enferadi, M. Bakhtiari, Accelerator production of the positron emitter zirconium 89, Ann. Nucl. Energy 41 (2012) 97-103, https://doi.org/10.1016/j.anucene.2011.11.014.
  10. N. Amjed, A. Wajid, N. Ahmad, M.A. Ishaq, M. Aslam, M.M. Hussain, S.M. Qaim, Evaluation of nuclear reaction cross sections for optimization of production of the important non-standard positron emitting radionuclide 89Zr using proton and deuteron induced reactions on 89Y target, Appl. Radiat. Isot. 165 (2020) 109338, https://doi.org/10.1016/j.apradiso.2020.109338.
  11. A. Wooten, E. Madrid, G. Schweitzer, L. Lawrence, E. Mebrahtu, B.C. Lewis, S. E. Lapi, Routine production of 89Zr using an automated module, Appl. Sci. 3 (3) (2013) 593-613, https://doi.org/10.3390/app3030593.
  12. J.Y. Lee, M.S. Hur, Y. Kong, E. Lee, S.H. Yang, P.S. Choi, J.Y. Park, Medical radioisotope 89Zr production with RFT-30 cyclotron, J. Radioanal. Nucl. Chem. 330 (2) (2021) 455-460, https://doi.org/10.1007/s10967-021-07884-9.
  13. M.K. Pandey, A. Bansal, J. Ellinghuysen, D. Vail, H.M. Berg, T.R. DeGrado, A new solid target design for the production of 89Zr and radiosynthesis of high molar activity [89Zr]Zr-DBN, American Journal of Nuclear Medicine and Molecular Imaging 12 (1) (2022) 15-24. https://pubmed.ncbi.nlm.nih.gov/35295887/.
  14. S. Feizi, Y. Fazaeli, P. Ashtari, S.P. Shirmardi, H. Yousefnia, G. Aslani, A new targetry system for production of zirconium-89 radioisotope with Cyclone-30 cyclotron, Radiochim. Acta 0 (0) (2023), https://doi.org/10.1515/ract-2022-0083.
  15. Denise B. Pelowitz, et al., MCNP6 User's manual Version 1.0. LA-CP-13-00634, Rev (2013).
  16. T. Goorley, M.R. James, T.C. Booth, F.B. Brown, J.S. Bull, L.J. Cox, J.W. Durkee, J. S. Elson, M.L. Fensin, R.J. Forster, J.S. Hendricks, H.G. Hughes, R.C. Johns, B. C. Kiedrowski, R.L. Martz, S.G. Mashnik, G.W. McKinney, D.B. Pelowitz, R.E. Prael, T. Zukaitis, Features of MCNP6, Ann. Nucl. Energy 87 (2016) 772-783, https://doi.org/10.1016/j.anucene.2015.02.020.
  17. S.G. Mashnik, A.J. Sierk, CEM03. 03 User Manual, LANL, Los Alamos, NM, USA, 2012. Report LA-UR-12-01364.
  18. S.G. Mashnik, Validation and Verfication of MCNP6 against High-Energy Experimental Data and Calculations by Other Codes, the CEM Testing Primer, LANL, Los Alamos, NM, USA, 2011. Report LA-UR-11-05129.
  19. M. Mehta, N. Singh, R. Makwana, P. Subhash, S.V. Suryanarayana, S. Parashari, R. Chauhan, R.P. Singh, H. Naik, S. Mukherjee, B. Soni, S. Khirwadkar, J. Varmuza, K. Katovsky, Measurement of (N,γ) Reaction Cross Section of 186W-isotope at Neutron Energy of 20.02±0.58 MeV, Indian Journal of Pure & Applied Physics, 2020, https://doi.org/10.56042/ijpap.v58i5.67688.
  20. M. Bakhtiari, L.M. Oranj, N. Jung, A. Lee, H. Lee, Study on concrete activation reduction in a PET cyclotron vault, Journal of Radiation Protection and Research 45 (3) (2020) 130-141, https://doi.org/10.14407/jrpr.2020.45.3.130.
  21. M.N. Sarkawi, M.F.M. Zain, M.H. Rabir, F.M. Idris, J. Zainal, Radiation shielding properties of ferro-boron concrete, IOP Conference Series 298 (2018) 012037, https://doi.org/10.1088/1757-899x/298/1/012037.
  22. Jean-Christophe Sublet, The FISPACT-II User Manual, 2015, p. 1281, https://doi.org/10.13140/RG.2.1.4777.
  23. K.W. Choi, J.J. Lee, C.L. Kim, J.H. Jung, Development of safety-based regulatory verification technologies for regulatory system on decommissioning transient staet of nuclear facilities, Nuclear Safety and Security Commission (2021) 2016-2025.
  24. R.V. Williams, C.J. Gesh, R.T. Pagh, Compendium of material composition data for radiation transport modeling, OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) (2021), https://doi.org/10.2172/1023125.
  25. S. Vichi, F. Zagni, G. Cicoria, A. Infantino, S. Vichi, M. Zeller, T.S. Carzaniga, K. P. Nesteruk, S. Braccini, M. Marengo, D. Mostacci, Activation studies of a PET cyclotron bunker, Radiat. Phys. Chem. 161 (2019) 48-54, https://doi.org/10.1016/j.radphyschem.2019.04.001.
  26. D. Jang, D. Lee, K.J. Hoon, Radioactivation analysis of concrete shielding wall of cyclotron room using Monte Carlo simulation, Journal of the Korean Society of Radiology 11 (5) (2017) 335-341, https://doi.org/10.7742/jksr.2017.11.5.335.
  27. Lee, Byung Chul, & Kim, Heon Il. Shielding Technology for High Energy Radiation Production Facility. Korea.
  28. J.A. Martinez-Serrano, A.M.C. De Los Rios, Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX, Med. Phys. 37 (11) (2010) 6015-6021, https://doi.org/10.1118/1.3505919.
  29. Jaeho Lee, Development of Reduction Technique and Evaluation of Radioactive Concrete Waste in Cyclotron Facility [thesis], Hanyang University, 2016.
  30. Edward L. Collins, Julien Boyance, R. Frances, Clark, Tinnin John, Andre Williams, Decontamination and Decommissioning of the 60〃Cyclotron Facility at Argonne National Laboratory-East Project Final Report, 2001. ANL/D&D/01-1.
  31. Nuclear Safety and Security Commission, Act on Regulations on Classification of Radioactive Waste and Criteria for Self-Disposal, 2020.
  32. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley & Sons, 1986, p. 168p.
  33. P. Dalton, J.E. Turner, New evaluation of mean excitation energies for use in radiation dosimetry, Health Phys. 15 (3) (1968) 257-262, https://doi.org/10.1097/00004032-196809000-00007.
  34. M. Sharifian, M. Sadeghi, B. Alirezapour, M. Yarmohammadi, K. Ardaneh, Modeling and experimental data of zirconium-89 production yield, Appl. Radiat. Isot. 130 (2017 Dec) 206-210, https://doi.org/10.1016/j.apradiso.2017.09.044. Epub 2017 Sep 29. PMID: 28992565.
  35. F.T. Tarkanyi, A.V. Ignatyuk, A. Hermanne, et al., Recommended nuclear data for medical radioisotope production: diagnostic positron emitters, J. Radioanal. Nucl. Chem. 319 (2019) 533-666, https://doi.org/10.1007/s10967-018-6380-5.
  36. D. Rochman, A.J. Koning, J.Ch Sublet, M. Fleming, et al., The TENDL library: hope, reality and future, in: Proceedings of the International Conference on Nuclear Data for Science and Technology, 2016. Bruges, Belgium.
  37. T. Nakamura, Overview of experimental works on secondary particle production and transport by high-energy particle beams, Radiat. Protect. Environ. 35 (3) (2012) 111, https://doi.org/10.4103/0972-0464.117665.
  38. M. Baba, S. Kamada, T. Itoga, Y. Unno, W. Takahashi, T. Oishi, Measurement of energy-angluar neutron distribution for 7Li, 9Be(p,xn) reaction at EP=70 MeV and 11 MeV, JKPS 59 (2011) 1676-1680, https://doi.org/10.3938/jkps.59.1676.
  39. K. Shin, K. Hibi, M. Fujii, Y. Uwamino, T. Nakamura, Neutron and photon production from thick targets bombarded by 30-MeV p, 33-MeV d, 65-MeV He3, and 65-MeV α ions: experiment and comparison with cascasde Monte Carlo calculations, Phys. Rev. 29 (4) (1984) 1307-1316, https://doi.org/10.1103/physrevc.29.1307.
  40. D.C. Larson, ENDF/B-VIII.0, Dec 2011.