• Title/Summary/Keyword: Proton-beam degrader

Search Result 6, Processing Time 0.022 seconds

Design of proton-beam degrader for high-purity 89Zr production

  • Hyunjin Lee;Sangbong Lee;Daeseong Choi;Gyoseong Jeong;Hee Seo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2683-2689
    • /
    • 2024
  • This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.

Application of C-11 Gas Target Using Finite Element Method (FEM을 이용한 C-11 기체표적의 성능평가)

  • Hur M.G.;Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1699-1704
    • /
    • 2005
  • In this research the energy degrader, which is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the Nastran mediocrity finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined, and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

  • PDF

The Evaluation of Performance of C-11 Radio Isotope Gas Target using Finite Element Method (FEM을 이용한 C-11 동위원소 기체표적의 성능평가)

  • Oh, Hwan-Sup;Hur, Min-Goo;Park, Sang-Pil;Jung, Hyo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2006
  • The energy degrader is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

A Study of Radiation Exposure in Proton Therapy Facility (양성자치료기 가속기 시설에서의 작업종사자의 방사선 피폭 연구)

  • Lee, Sang-Hoon;Shin, Dong-Ho;Yoon, Myong-Geun;Shin, Jung-Wook;Rah, Jeong-Eun;Kwak, Jung-Won;Park, Sung-Yong;Shin, Kyung-Hwan;Lee, Doo-Hyun;Ahn, Sung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Proton therapy facility, which is recently installed at National Cancer Center in Korea, generally produces a large amount of radiation near cyclotron due to the secondary particles and radioisotopes caused by collision between proton and nearby materials during the acceleration. Although the level of radiation by radioisotope decreases in length of time, radiation exposure problem still exists since workers are easily exposed by a low level of radiation for a long time due to their job assignment for maintenance or repair of the proton facility. In this paper, the working environment near cyclotron, where the highest radiation exposure is expected, was studied by measuring the degree of radiation and its duration for an appropriate level of protective action guide. To do this, we measured the radiation change in the graphite based energy degrader, the efficiency of transmitted beam and relative activation degree of the transmission beam line. The results showed that while the level of radiation exposure around cyclotron and beam line during the operation is much higher than the other radiation therapy facilities, the radiation exposure rate per year is under the limit recommended by the law showing 1~3 mSv/year.

  • PDF

Oprimization Study for the CRC PIXE System Beam Transport Line

  • Jeong, Cheol-Ki;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Proton Induced X-ray Emission (PIXE) is a MeV ion beam analysis method for use with particle accelerators. PIXE uses low-energy charged particles as an excitation mechanism to generate characteristic x-ray emission from each element in a target. In PIXE analysis, the beam current used is from a few nA to several tens of nA. Chosun University (Cyclotron Research Center) designed a $50{\mu}A$ beam line from the 13 MeV cyclotron for use with a PIXE analysis system, as well as performing beam transport line optimization research. In this study, the beam line operation conditions for the optimization process of beam transport and beam characteristics are shown.

Start-to-end modeling and transmission efficiency optimization for a cyclotron-based proton therapy beamline

  • Yu Chen;Bin Qin;Xu Liu;Wei Wang;Yicheng Liao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4365-4374
    • /
    • 2024
  • Utilizing first-order beam dynamics models is adequate for studying the beam properties during the conceptual design of a cyclotron-based proton therapy beamline. After finishing lattice design, particle-matter interaction simulations for passive elements (e.g., degrader, collimators, energy slit) are required. The cascade simulation is used for lattice updates in each iteration, which is complicated. In addition, when the models involve particle tracking and particle-matter interaction, their optimization process is time-consuming. Therefore, this study proposes a start-to-end modeling method using Monte Carlo Beam Delivery Simulation (BDSIM) software that considers more realistic factors, such as particle-matter interaction and the realistic vacuum chamber, to precisely evaluate working parameters, along with an efficient optimization method that utilizes multi-objective Bayesian optimization (MOBO) to improve transmission efficiency. Taking the Huazhong University of Science and Technology proton therapy facility (HUST-PTF) as an example, beam loss along the beamline is located, quantified, and subsequently reduced by tuning the quadrupole strengths based on MOBO. The results show that: (i) By considering the particle-matter interaction and the realistic vacuum chamber, the precision in the prediction of the beam properties is improved; (ii) After optimization, the transmission efficiency of the entire beamline is relatively increased by an average of 6.52 % under different energy settings, especially 11.39 % at 70 MeV.