DOI QR코드

DOI QR Code

Effects of reflector, surface treatment, and length of scintillation crystal on the performance of TOF-DOI PET detector with dual-ended readout

  • Jin Ho Jung (Department of Electronic Engineering, Sogang University) ;
  • Yong Choi (Department of Electronic Engineering, Sogang University) ;
  • Johyeon Yun (Department of Electronic Engineering, Sogang University) ;
  • Jiwoong Jung (Department of Electronic Engineering, Sogang University) ;
  • Sangwon Lee (Department of Electronic Engineering, Sogang University)
  • 투고 : 2023.09.12
  • 심사 : 2024.02.10
  • 발행 : 2024.07.25

초록

The purpose of this study was to investigate the effect of the reflector, surface treatment, and length of scintillation crystals on the performance of a time-of-flight and depth-of-interaction (TOF-DOI) PET detector with a dual-ended readout and to determine the best reflector and surface treatment. Various types of crystal arrays with three different reflectors (ESR, BaSO4, and Toray), three different lateral surface treatments (all-polished (AP), all-roughened (AR), and partially roughened (PR, three sides polished, and one side roughened)), and two different lengths (20 and 15 mm) were fabricated. The highest light collection efficiency and best energy resolution were achieved using a crystal with a diffuse reflector (BaSO4 for AP and Toray for AR). In contrast, the best coincidence timing resolution (CTR) was achieved using an AR crystal with a specular reflector (ESR). The best DOI resolution was achieved using an AR crystal with BaSO4. Moreover, the results measured with the 20 mm long crystals were similar to those measured with the 15 mm long crystals. Therefore, we concluded that the dual-ended readout PET detector employing the crystal with AR lateral surface treatment and ESR was a good candidate for TOF-DOI PET because it provided excellent CTR and adequate DOI resolution.

키워드

과제정보

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D Program (No. P0017185), by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1I1A1A01051112), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00280177).

참고문헌

  1. S. Vandenberghe, E. Mikhaylova, E. D'Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET, EJNMMI Phys 3 (2016) 1-30.  https://doi.org/10.1186/s40658-016-0137-4
  2. H. Peng, C.S. Levin, Recent developments in PET instrumentation, Curr. Pharmaceut. Biotechnol. 11 (2010) 555-571.  https://doi.org/10.2174/138920110792246555
  3. C.M. Chang, J.W. Cates, C.S. Levin, Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET, Phys. Med. Biol. 62 (2017) 258-271.  https://doi.org/10.1088/1361-6560/62/1/258
  4. G.B. Ko, J.S. Lee, Single transmission-line readout method for silicon photomultiplier based time-of-flight and depth-of-interaction PET, Phys. Med. Biol. 62 (2017) 2194-2207.  https://doi.org/10.1088/1361-6560/aa5a44
  5. L. Blackberg, S. Sajedi, G. El Fakhri, H. Sabet, A layered single-side readout DOI TOF-PET detector, Phys. Med. Biol. 66 (2021) 045025. 
  6. E. Yoshida, F. Obata, K. Kamada, A. Yoshikawa, T. Yamaya, Development of crosshair light sharing PET detector with TOF and DOI capabilities using fast LGSO scintillator, Phys. Med. Biol. 66 (2021) 225003. 
  7. G. Borghi, V. Tabacchini, R. Bakker, D.R. Schaart, Sub-3 mm, near-200 ps TOF/DOI-PET imaging with monolithic scintillator detectors in a 70 cm diameter tomographic setup, Phys. Med. Biol. 63 (2018) 155006. 
  8. T. Ling, T.K. Lewellen, R.S. Miyaoka, Depth of interaction decoding of a continuous crystal detector module, Phys. Med. Biol. 52 (2007) 2213-2228.  https://doi.org/10.1088/0031-9155/52/8/012
  9. R. Vinke, H. Lohner, D.R. Schaart, H.T. van Dam, S. Seifert, F.J. Beekman, P. Dendooven, Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array, Nucl. Instrum. Methods A. 621 (2010) 595-604.  https://doi.org/10.1016/j.nima.2010.05.034
  10. S. Gundacker, A. Knapitsch, E. Auffray, P. Jarron, T. Meyer, P. Lecoq, Time resolution deterioration with increasing crystal length in a TOF-PET system, Nucl. Instrum. Methods A. 737 (2014) 92-100.  https://doi.org/10.1016/j.nima.2013.11.025
  11. Y.B. Han, H.G. Kang, S.H. Song, G.B. Ko, J.S. Lee, S.J. Hong, SiPM-based dualended-readout DOI-TOF PET module based on mean-time method, J. Instrum. 14 (2019) P02023. 
  12. H.G. Kang, T. Yamaya, Y.B. Han, S.H. Song, G.B. Ko, J.S. Lee, S.J. Hong, Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI PET detector, Biomed, Phys. Eng. Express 6 (2020) 065028. 
  13. Z. Kuang, Z. Sang, X. Wang, X. Fu, N. Ren, X. Zhang, Y. Zheng, Q. Yang, Z. Hu, J. Du, D. Liang, X. Liu, H. Zheng, Y. Yang, Development of depth encoding small animal PET detectors using dual-ended readout of pixelated scintillator arrays with SiPMs, Med. Phys. 45 (2018) 613-621.  https://doi.org/10.1002/mp.12722
  14. Z. Kuang, X. Wang, C. Li, X. Deng, K. Feng, Z. Hu, X. Fu, N. Ren, X. Zhang, Y. Zheng, D. Liang, X. Liu, H. Zheng, Y. Yang, Performance of a high-resolution depth encoding PET detector using barium sulfate reflector, Phys. Med. Biol. 62 (2017) 5945-5958.  https://doi.org/10.1088/1361-6560/aa71f3
  15. S. Ren, Y. Yang, S.R. Cherry, Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout, Med. Phys. 41 (2014) 072503. 
  16. S. Surti, J.S. Karp, Update on latest advances in time-of-flight PET, Phys. Med. 80 (2020) 251-258.  https://doi.org/10.1016/j.ejmp.2020.10.031
  17. D. Nikolopoulos, I. Kandarakis, X. Tsantilas, I. Valais, D. Cavouras, A. Louizi, Comparative study using Monte Carlo methods of the radiation detection efficiency of LSO, LuAP, GSO and YAP scintillators for use in positron emission imaging (PET), Nucl. Instrum. Methods A. 569 (2006) 350-354.  https://doi.org/10.1016/j.nima.2006.08.033
  18. K. Park, J. Jung, Y. Choi, H. Leem, Y. Kim, Feasibility study of a time-of-flight brain positron emission tomography employing individual channel readout electronics, Sensors 21 (2021) 55-66. 
  19. H.G. Kang, K.J. Kim, K. Kamada, A. Yoshikawa, E. Yoshida, F. Nishikido, T. Yamaya, Optimization of GFAG crystal surface treatment for SiPM based TOF PET detector, Biomed. Phys. Eng. Express 8 (2022) 025025. 
  20. J.H. Jung, Y. Choi, J. Jung, S. Kim, Development of a high-density position decoder circuit for GAPD-based PET with a large number of readout channels, Nucl. Instrum. Methods A. 741 (2014) 117-123.  https://doi.org/10.1016/j.nima.2013.12.055
  21. M. Aykac, F. Bauer, C.W. Williams, M. Loope, M. Schmand, Timing performance of Hi-Rez detector for time-of-flight (TOF) PET, IEEE Trans. Nucl. Sci. 53 (2006) 1084-1089.  https://doi.org/10.1109/TNS.2006.874957
  22. E. Berg, E. Roncali, S.R. Cherry, Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study, Biomed. Opt Express 6 (2015) 2220-2230.  https://doi.org/10.1364/BOE.6.002220
  23. F. Loignon-Houle, C.M. Pepin, S.A. Charlebois, R. Lecomte, Reflectivity quenching of ESR multilayer polymer film reflector in optically bonded scintillator arrays, Nucl. Instrum. Methods A. 851 (2017) 62-67.  https://doi.org/10.1016/j.nima.2017.01.051
  24. C.-Y. Liu, A.L. Goertzen, Improved event positioning in a gamma ray detector using an iterative position-weighted centre-of-gravity algorithm, Phys. Med. Biol. 58 (2013) N189-N200.  https://doi.org/10.1088/0031-9155/58/14/N189
  25. T. Binder, H.G. Kang, M. Nitta, F. Schneider, T. Yamaya, K. Parodi, F. Wiest, P. G. Thirolf, Performance evaluation of a staggered three-layer DOI PET detector using a 1mmLYSO pitch with PETsys TOFPET2 ASIC: comparison of HAMAMATSU and KETEK SiPMs, Phys. Med. Biol. 66 (2021) 125016.