참고문헌
- G. Youinou, S.R. Sen, Enhanced accident tolerant Fuels for LWRs-A Preliminary systems analysis, Idaho Falls (2013). http://www.inl.gov.
- S.J. Zinkle, et al., Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (1-3) (2014) 374-379, https://doi.org/10.1016/j.jnucmat.2013.12.005.
- A.A. Galahom, Investigate the Possibility of Burning Weapon-Grade Plutonium Using a Concentric Rods BS Assembly of VVER-1200, vol. 148, Annals of Nuclear Energy, 2020, https://doi.org/10.1016/j.anucene.2020.107758.
- M.Y.M. Mohsen, M.A.E. Abdel-Rahman, A.A. Galahom, Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials, Ann. Nucl. Energy 159 (2021) 1-15, https://doi.org/10.1016/j.anucene.2021.108330.
- A.A. Galahom, et al., Searching for optimal accident tolerant fuel for the VVER-1200 reactor from the neutronic point of view, Energy Sources, Part A Recovery, Util. Environ. Eff. 45 (1) (2023) 1405-1423, https://doi.org/10.1080/15567036.2023.2179694.
- B. Cox, et al., Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, 1998. Vienna.
- W.D. Bennett, et al., FY16 Status Report for the Uranium-Molybdenum Fuel Concept, 2016.
- X.Y. Chen, et al., Mechanical and thermal properties of zirconium claddings after doping niobium: Understanding from first-principles calculations, J. Nucl. Mater. 568 (2022), https://doi.org/10.1016/j.jnucmat.2022.153876.
- Q. Xiong, et al., Realistic Performance Assessment of FeCrAl-UN/U3Si2 Accident Tolerant Fuel under Loss-Of-Coolant Accident Scenario, vol. 243, Reliability Engineering & System Safety, 2024 109847, https://doi.org/10.1016/j.ress.2023.109847.
- S. Chen, C. Yuan, D. Guo, Radial distributions of power and isotopic concentrations in candidate accident tolerant fuel U3Si2 and UO2/U3Si2 fuel pins with FeCrAl cladding, Ann. Nucl. Energy 124 (2019) 460-471, https://doi.org/10.1016/j.anucene.2018.10.025.
- D. Frazer, et al., High temperature mechanical properties of fluorite crystal structured materials (CeO2, ThO2, and UO2) and advanced accident tolerant fuels (U3Si2, UN, and UB2), J. Nucl. Mater. 554 (2021), https://doi.org/10.1016/j.jnucmat.2021.153035.
- P. Suk, et al., 'Neutronic performance of VVER-1200 reactor with advanced fuel and cladding materials', Nucl. Eng. Des. 405 (2023) https://doi.org/10.1016/j.nucengdes.2023.112216.
- D. Kim, J. Shim, J.T. Seo, Comparison of Core Design Parameters for BANDI-60 Using UO2 and U-Mo Fuels, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Seoul, 2022, pp. 1-4.
- J. Rest, et al., U-mo Fuels Handbook, Argonne National Laboratory, Argonne, Illinois, 2006. Version 1.0, www.anl.gov.
- M.K. Meyer, et al., Irradiation Behavior of Uranium-Molybdenum Dispersion Fuel: Fuel Performance Data from RERTR-1 and RERTR-2, 22nd International Meeting on Reduced Enrichment for Research and Test Reactors, 1999. Budapest, Hungary.
- S. Van Den Berghe, P. Lemoine, Review of 15 years of high-density lowenriched UMo dispersion fuel development for research reactors in Europe, Nucl. Eng. Technol. 46 (2) (2014) 125-146, https://doi.org/10.5516/NET.07.2014.703.
- J.L. Snelgrove, et al., Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design. Argonne (1997), https://doi.org/10.1016/S0029-5493(97)00217-3.
- G.L. Hofman, M.K. Meyer, L. Vegas, Observation on the Irradiation Behavior of UMo Alloy Dispersion Fuel, 23rd International Meeting on Reduced Enrichment for Research and Test Reactors, Las Vegas, Nevada, 2000.
- M.K. Meyer, et al., Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2-3) (2002) 221-236. www.elsevier.com/locate/jnucmat. https://doi.org/10.1016/S0022-3115(02)00850-4
- D.I. Poston, et al., KRUSTY reactor design, Nucl. Technol. 206 (sup1) (2020) 13-30, https://doi.org/10.1080/00295450.2020.1725382.
- S.H. Choi, et al., 'Conceptual core design and neutronics analysis for a space heat pipe reactor using a low enriched uranium fuel', Nucl. Eng. Des. 387 (2022) https://doi.org/10.1016/j.nucengdes.2021.111603.
- K. Bakker, et al., Using molybdenum depleted in 95 Mo in UMo fuel, in: International Meeting on Reduced Enrichment for Research and Test Reactors, Bariloche, Argentina, 2002, pp. 1-5.
- M.A. Elkin, A.S. Kiselev, M.S. Slobodyan, Pulsed laser welding of Zr-1%Nb alloy, Nucl. Eng. Technol. 51 (3) (2019) 776-783, https://doi.org/10.1016/j.net.2018.12.016.
- J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
- IAEA, Status Report 108-VVER-1200 (V-491) (VVER-1200, 2011 (V-491)). Available at: https://aris.iaea.org/PDF/VVER-1200(V-491).pdf. (Accessed 18 September 2023).
- G. Ozesme, B. Bulut Acar, Development of canisters for spent fuels of VVER-1200 and ATMEA1 new generation reactors and determination of geological disposal densities, Ann. Nucl. Energy 150 (2021) 1-14, https://doi.org/10.1016/j.anucene.2020.107860.
- M.B. Chadwick, et al., ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear Science and Technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060, https://doi.org/10.1016/j.nds.2006.11.001.
- S.L. Chen, X.J. He, C.X. Yuan, Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors, Nucl. Sci. Tech. 31 (3) (2020), https://doi.org/10.1007/s41365-020-0741-9.