DOI QR코드

DOI QR Code

Neutronic examination of the U-Mo accident tolerant fuel for VVER-1200 reactors

  • Semra Daydas (Nuclear Engineering Department, Faculty of Engineering and Architecture, Sinop University) ;
  • Ali Tiftikci (Nuclear Engineering Department, Faculty of Engineering and Architecture, Sinop University)
  • Received : 2023.10.04
  • Accepted : 2024.02.10
  • Published : 2024.07.25

Abstract

In this study, we investigated the possibility of employing accident tolerant fuel (ATF) in VVER-1200/V491 assembly without gadolinium-containing fuel rods using the Monte Carlo code Serpent 1.1.7 with ENDF/B-VII cross-section library. The analysis involves assembly design with reflective boundary conditions. To compare the neutronic performances, U-5Mo, U-7.5Mo, U-10Mo, and U-15Mo fuels were chosen in addition to ordinary UO2 fuel. The concentration of 135Xe, 149Sm, fissile and fertile isotopes with burnup, reactivity feedback with fuel temperature variation, and β eff values were calculated. The results indicate that the fuel cycle length increases by 54.27% for U-5Mo, 32.6% for U-7.5Mo, and 13.8% for U-10Mo, while it decreases by 16.4% for U-15Mo fuel. Additionally, the effect of 95Mo content in natural Mo was investigated by reducing the 95Mo concentration. According to the results, each proposed fuel's fuel cycle length extended when the depletion ratio of 95Mo increased. Additionally, the calculations for reactivity feedback guarantee safe operating conditions for all U-xMo fuels.

Keywords

References

  1. G. Youinou, S.R. Sen, Enhanced accident tolerant Fuels for LWRs-A Preliminary systems analysis, Idaho Falls (2013). http://www.inl.gov. 
  2. S.J. Zinkle, et al., Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (1-3) (2014) 374-379, https://doi.org/10.1016/j.jnucmat.2013.12.005. 
  3. A.A. Galahom, Investigate the Possibility of Burning Weapon-Grade Plutonium Using a Concentric Rods BS Assembly of VVER-1200, vol. 148, Annals of Nuclear Energy, 2020, https://doi.org/10.1016/j.anucene.2020.107758. 
  4. M.Y.M. Mohsen, M.A.E. Abdel-Rahman, A.A. Galahom, Integrated analysis of VVER-1000 fuel assembly fueled with accident tolerant fuel (ATF) materials, Ann. Nucl. Energy 159 (2021) 1-15, https://doi.org/10.1016/j.anucene.2021.108330. 
  5. A.A. Galahom, et al., Searching for optimal accident tolerant fuel for the VVER-1200 reactor from the neutronic point of view, Energy Sources, Part A Recovery, Util. Environ. Eff. 45 (1) (2023) 1405-1423, https://doi.org/10.1080/15567036.2023.2179694. 
  6. B. Cox, et al., Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, 1998. Vienna. 
  7. W.D. Bennett, et al., FY16 Status Report for the Uranium-Molybdenum Fuel Concept, 2016. 
  8. X.Y. Chen, et al., Mechanical and thermal properties of zirconium claddings after doping niobium: Understanding from first-principles calculations, J. Nucl. Mater. 568 (2022), https://doi.org/10.1016/j.jnucmat.2022.153876. 
  9. Q. Xiong, et al., Realistic Performance Assessment of FeCrAl-UN/U3Si2 Accident Tolerant Fuel under Loss-Of-Coolant Accident Scenario, vol. 243, Reliability Engineering & System Safety, 2024 109847, https://doi.org/10.1016/j.ress.2023.109847. 
  10. S. Chen, C. Yuan, D. Guo, Radial distributions of power and isotopic concentrations in candidate accident tolerant fuel U3Si2 and UO2/U3Si2 fuel pins with FeCrAl cladding, Ann. Nucl. Energy 124 (2019) 460-471, https://doi.org/10.1016/j.anucene.2018.10.025. 
  11. D. Frazer, et al., High temperature mechanical properties of fluorite crystal structured materials (CeO2, ThO2, and UO2) and advanced accident tolerant fuels (U3Si2, UN, and UB2), J. Nucl. Mater. 554 (2021), https://doi.org/10.1016/j.jnucmat.2021.153035. 
  12. P. Suk, et al., 'Neutronic performance of VVER-1200 reactor with advanced fuel and cladding materials', Nucl. Eng. Des. 405 (2023) https://doi.org/10.1016/j.nucengdes.2023.112216. 
  13. D. Kim, J. Shim, J.T. Seo, Comparison of Core Design Parameters for BANDI-60 Using UO2 and U-Mo Fuels, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Seoul, 2022, pp. 1-4. 
  14. J. Rest, et al., U-mo Fuels Handbook, Argonne National Laboratory, Argonne, Illinois, 2006. Version 1.0, www.anl.gov. 
  15. M.K. Meyer, et al., Irradiation Behavior of Uranium-Molybdenum Dispersion Fuel: Fuel Performance Data from RERTR-1 and RERTR-2, 22nd International Meeting on Reduced Enrichment for Research and Test Reactors, 1999. Budapest, Hungary. 
  16. S. Van Den Berghe, P. Lemoine, Review of 15 years of high-density lowenriched UMo dispersion fuel development for research reactors in Europe, Nucl. Eng. Technol. 46 (2) (2014) 125-146, https://doi.org/10.5516/NET.07.2014.703. 
  17. J.L. Snelgrove, et al., Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design. Argonne (1997), https://doi.org/10.1016/S0029-5493(97)00217-3. 
  18. G.L. Hofman, M.K. Meyer, L. Vegas, Observation on the Irradiation Behavior of UMo Alloy Dispersion Fuel, 23rd International Meeting on Reduced Enrichment for Research and Test Reactors, Las Vegas, Nevada, 2000. 
  19. M.K. Meyer, et al., Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, J. Nucl. Mater. 304 (2-3) (2002) 221-236. www.elsevier.com/locate/jnucmat.  https://doi.org/10.1016/S0022-3115(02)00850-4
  20. D.I. Poston, et al., KRUSTY reactor design, Nucl. Technol. 206 (sup1) (2020) 13-30, https://doi.org/10.1080/00295450.2020.1725382. 
  21. S.H. Choi, et al., 'Conceptual core design and neutronics analysis for a space heat pipe reactor using a low enriched uranium fuel', Nucl. Eng. Des. 387 (2022) https://doi.org/10.1016/j.nucengdes.2021.111603. 
  22. K. Bakker, et al., Using molybdenum depleted in 95 Mo in UMo fuel, in: International Meeting on Reduced Enrichment for Research and Test Reactors, Bariloche, Argentina, 2002, pp. 1-5. 
  23. M.A. Elkin, A.S. Kiselev, M.S. Slobodyan, Pulsed laser welding of Zr-1%Nb alloy, Nucl. Eng. Technol. 51 (3) (2019) 776-783, https://doi.org/10.1016/j.net.2018.12.016. 
  24. J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024. 
  25. IAEA, Status Report 108-VVER-1200 (V-491) (VVER-1200, 2011 (V-491)). Available at: https://aris.iaea.org/PDF/VVER-1200(V-491).pdf. (Accessed 18 September 2023). 
  26. G. Ozesme, B. Bulut Acar, Development of canisters for spent fuels of VVER-1200 and ATMEA1 new generation reactors and determination of geological disposal densities, Ann. Nucl. Energy 150 (2021) 1-14, https://doi.org/10.1016/j.anucene.2020.107860. 
  27. M.B. Chadwick, et al., ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear Science and Technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060, https://doi.org/10.1016/j.nds.2006.11.001. 
  28. S.L. Chen, X.J. He, C.X. Yuan, Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors, Nucl. Sci. Tech. 31 (3) (2020), https://doi.org/10.1007/s41365-020-0741-9.