DOI QR코드

DOI QR Code

Vibrational enhancement of evolutionary monochromatic neutron transport

  • Nassar H.S. Haidar (Euclidean Press LLC)
  • 투고 : 2022.08.29
  • 심사 : 2024.02.07
  • 발행 : 2024.07.25

초록

The monochromatic hyperbolic neutron density wave is conceived as a Rayleigh-like wave with mixed transverse and longitudinal components. It is proved for the first time that the absolute ratio of the longitudinal to transverse interfering components, varies, with increasing the frequency of this wave, from zero to 1. Such a limited variation is to be coined as vibrational enhancement of evolutionary one-speed neutron transport.

키워드

과제정보

The author is grateful to the anonymous referees for a number of valuable suggestions and comments on an earlier version of this paper.

참고문헌

  1. R.B. Perez, R.E. Uhring, Propagation of neutron waves in moderating media, Nucl. Sci. Eng. 17 (1) (1963) 90-100. https://doi.org/10.13182/NSE63-A17214
  2. M.J. Ohanian, R.S. Booth, R.B. Perez, Eigenfunction analysis of neutron-wave propagation in moderating media, Nucl. Sci. Eng. 30 (1) (1967) 75-103. https://doi.org/10.13182/NSE67-A17244
  3. N.H.S. Haidar, Neutron density waves versus temperature waves, Int. J. Adv. Nucl. React. Des. Technol. 3 (2021) 206-212. https://doi.org/10.1016/j.jandt.2021.09.004
  4. G.F. Niderauer, Neutron Kinetics Based on the Equation of Telegraphy (Ph.D. Dissertation), Iowa State University, US, 1967.
  5. H. Hayasaka, S. Takeda, Study of neutron wave propagation, J. Nucl. Sci. Technol. 5 (11) (1968) 564-571. https://doi.org/10.1080/18811248.1968.9732515
  6. H. Gomez, I. Colominas, F. Navarrina, J. Paris, M. Casteleiro, A hyperbolic theory for advection-diffusion problems: Mathematical foundations and numerical modeling, Arch. Comput. Meth. Eng. 11 (2010) 191-211. https://doi.org/10.1007/s11831-010-9042-5
  7. G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand, New York, US, 1970.
  8. H. Soodak (Ed.), Reactor Handbook, III, A, Interscience, New York, US, 1962.
  9. K.H. Bekurts, K. Wirtz, Neutron Physics, Springer Verlag, Berlin, 1964.
  10. A. Berbellini, A. Moelli, A.M.G. Ferreira, Ellipticity of Rayleigh waves in basin and hard-rock sites in northern Italy, Geophys. J. Inter. 206 (1) (2016) 395-407. https://doi.org/10.1093/gji/ggw159
  11. I.A. Viktoro, Rayleigh and Lamb Waves: Physical Theory & Applications, Plenum Press, New York, US, 1967.
  12. S. Ooi, Rayleigh Wave Interactions with Tribological Contacts, (Ph.D. thesis), University of Sheffield, UK, 2015.
  13. N.H.S. Haidar, On physical and mathematical wave fronts in temperature waves, Transylv. J. Math. Mech. 14 (2) (2022) 139-158.
  14. L. Mandel, Color imagery by wavefront reconstruction, J. Opt. Soc. Amer. 55 (12) (1965) 1697-1698. https://doi.org/10.1364/JOSA.55.1697_1
  15. L. Herrera, D. Pavon, Hyperbolic theories of dissipation: Why and when we need them ? Physica A : Stat. Mech. Appl. 307 (1-2) (2002) 121-130. https://doi.org/10.1016/S0378-4371(01)00614-8
  16. A.M. Weinberg, E.P. Wigner, The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, US, 1958.
  17. A. Salazar, Energy propagation of thermal waves, Eur. J. Phys. 27 (2006) 1349-1355. https://doi.org/10.1088/0143-0807/27/6/009
  18. N.H.S. Haidar, A resonated and synchrophased three beams neutron cancer therapy installation, J. Nucl. Eng. Rad. Sci. 6 (2020) 034501.
  19. N.H.S. Haidar, Optimization of two opposing neutron beams parameters in dynamical (B/Gd) neutron cancer therapy, Nucl. Energy Technol. 5 (1) (2019) 1-7. https://doi.org/10.3897/nucet.5.32239
  20. D.D. Joseph, L. Preziosi, Heat waves, Rev. Modern Phys. 61 (1) (1989) 41-73. https://doi.org/10.1103/RevModPhys.61.41
  21. T. Hinno, Y. Ozawa, Comparison between longitudinal wave in electron plasma and one-velocity neutron transport, J. Nucl. Sci. Technol. 12 (2) (1975) 107-114. https://doi.org/10.1080/18811248.1975.9733076
  22. H. Beck, P.F. Meier, A. Thellung, Phonon hydrodynamics in solids, Phys. Status Solid 24 (1974) 11-63.
  23. A. Grassmann, F. Peters, Experimental investigation of heat conduction in wet sand, Heat Mass Transf. 35 (1999) 289-294. https://doi.org/10.1007/s002310050326
  24. W. Roetzel, N. Putra, S.K. Das, Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure, Int. J. Therm. Sci. 42 (2003) 541-552. https://doi.org/10.1016/S1290-0729(03)00020-6
  25. J. Ordonez-Miranda, J.J. Alvarado-Gil, Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model, Int. J. Therm. Sci. 48 (11) (2009) 2053-2062. https://doi.org/10.1016/j.ijthermalsci.2009.03.008
  26. N. Falcon, J. Labrador, Thermal waves and unstable convection in ZZ Ceti stars, Odessa Asrtronom. Public. 14 (2001) 141-143.
  27. J.K. Chen, D.Y. Tzou, J.E. Beraun, A semiclassical two-temperature model for ultrafast laser heating, Int. J. Heat Mass Transf. 49 (2006) 307-316. https://doi.org/10.1016/j.ijheatmasstransfer.2005.06.022
  28. M. Xu, L. Wang, Thermal oscillations and resonance in dual-phase lagging heat conduction, Int. J. Heat Mass Transfer 45 (5) (2002) 1055-1061. https://doi.org/10.1016/S0017-9310(01)00199-5
  29. A. Sathyabhama, S.P. Prashanth, Enhancement of boiling heat transfer using surface vibrations, Heat Transf.-Asian Res. 46 (1) (2015) 49-60. https://doi.org/10.1002/htj.21197
  30. P.G. Malischewsky, F. Scherbaum, Love's formula and H/V-ratio (ellipticity) of Rayleigh waves, Wave Motion 40 (1) (2004) 57-67. https://doi.org/10.1016/j.wavemoti.2003.12.015