DOI QR코드

DOI QR Code

Experimental study of the radiation shielding characteristics of new PbO-Na2O-B2O3-BaO glasses

  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • U. Rilwan (Department of Physics, Faculty of Natural and Applied Sciences, Nigerian Army University) ;
  • K.A. Mahmoud (Ural Federal University) ;
  • Mohamed Elsafi (Physics Department, Faculty of Science, Alexandria University)
  • Received : 2024.01.01
  • Accepted : 2024.01.31
  • Published : 2024.07.25

Abstract

This work synthesized four glass samples with a fixed ratio of PbO to Na2O and a variable ratio of BaO to B2O3. The linear attenuation coefficient (LAC) (μ, cm-1) and additional attenuator parameters were determined experimentally using a semiconductor detector and different gamma sources. The comparison was carried out between the experimental and the XCOM calculated results, with good agreement emerging between the two results. The impacts of the BaO substituting for the B2O3 on fabricated PNBB glasses' radiation shielding properties were discussed. By increasing the BaO substitution concentration between 10 and 25 mol.%, the LAC μ values (cm-1) increased by 76.60 %, 13.81 %, 12.56 %, and 12.52 % for the respective γ-ray energies of 0.059, 0.662, 1.173, and 1.332 MeV. The μ value reduction with raised gamma energy values increased the values of the calculated half-value thickness (Δ0.5) as a result of the μ and Δ0.5 values' reverse proportionality. Other shielding parameters such as the lead equivalent thickness (Δeq) and radiation protection efficiency were also determined for the present PNBB glass samples.

Keywords

References

  1. S. Sharma, Johns and cunningham's the physics of radiology, J. Med. Phys. 46 (2021) 128, https://doi.org/10.4103/jmp.JMP_102_21. 
  2. R. Bagheri, A.K. Moghaddam, S.P. Shirmardi, B. Azadbakht, M. Salehi, Determination of gamma-ray shielding properties for silicate glasses containing Bi 2 O 3 , PbO, and BaO, J. Non-Cryst. Solids 479 (2018) 62-71, https://doi.org/10.1016/j.jnoncrysol.2017.10.006. 
  3. D. Yilmaz, B. Aktas,, A. Calik, O.B. Aytar, Boronizing effect on the radiation shielding properties of Hardox 450 and Hardox HiTuf steels, Radiat. Phys. Chem. 161 (2019) 55-59, https://doi.org/10.1016/j.radphyschem.2019.04.019. 
  4. W. Guo-hui, H. Man-li, C. Fan-chao, F. Jun-dong, D. Yao-dong, Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by EB irradiation, Prog. Nucl. Energy 112 (2019) 225-232, https://doi.org/10.1016/j.pnucene.2019.01.001. 
  5. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses, J. Non-Cryst. Solids 545 (2020) (2020) 120269. 
  6. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010.  https://doi.org/10.1016/j.net.2020.12.012
  7. Shamsan, S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P. P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (11-12) (2018) 900-914.  https://doi.org/10.1080/10420150.2018.1505890
  8. A. As,kin, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kacal, Investigation ofthe gamma ray shielding parameters of (100-x) [0.5Li2O-0.1B2O3-0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids 521 (2019) 119489, https://doi.org/10.1016/j.jnoncrysol.2019.119489. 
  9. Y. Al-Hadeethi, M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code, Ceram. Int. 45 (2019) 24858-24864.  https://doi.org/10.1016/j.ceramint.2019.08.234
  10. E. Sakar, M. Buyukyildiz, B. Alim, B.C. Sakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications, Radiat. Phys. Chem. 159 (2019) 64-69, https://doi.org/10.1016/j.radphyschem.2019.02.042. 
  11. M.S. Al-Buriahi, M. Rashad, Amani Alalawi, M.I. Sayyed, Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system, Ceram. Int. 46 (2020) 16452-16458.  https://doi.org/10.1016/j.ceramint.2020.03.208
  12. B. Tellili, Y. Elmahroug, C. Souga, Investigation on radiation shielding parameters of cerrobend alloys, Nucl. Eng. Technol. 49 (2017) 1758-1771, https://doi.org/10.1016/j.net.2017.08.020. 
  13. H. Baltas, M. Sirin, A. Celik, I. Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cem. Concr. Compos. 97 (2019) 268-278, https://doi.org/10.1016/j.cemconcomp.2019.01.006. 
  14. M.H.A. Mhareb, Y.S.M. Alajerami, M.I. Sayyed, Nidal Dwaikat, Muna Alqahtani, Fatimh Alshahri, Noha Saleh, N. Alonizan, Taher Ghrib, Sarah Ibrahim Al-Dhafar. Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass, J. Non-Cryst. Solids 550 (2020) 120360. 
  15. S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K. NagaKrishnakanth, S. Venugopal Rao, Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses, Opt. Mater. 83 (2018) 34-42, https://doi.org/10.1016/j.optmat.2018.05.083. 
  16. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses, J. Non-Cryst. Solids 499 (2018) 75-85, https://doi.org/10.1016/j.jnoncrysol.2018.07.025. 
  17. M.R. Ahmed, B. Ashok, S.K. Ahmmad, A. Hameed, M.N. Chary, Md Shareefuddin, Infrared and Raman spectroscopic studies of Mn2+ ions doped in strontium alumino borate glasses: describes the role of Al2O3, Spectrochim. Acta Mol. Biomol. Spectrosc. 210 (2019) 308-314, https://doi.org/10.1016/j.saa.2018.11.053. 
  18. S. Pravinraj, M. Vijayakumar, K. Marimuthu, Enhanced luminescence behaviour of Eu3+ doped heavy metal oxide telluroborate glasses for Laser and LED applications, Phys. B Condens. Matter 509 (2017) 84-93, https://doi.org/10.1016/j.physb.2017.01.008. 
  19. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401, https://doi.org/10.1016/S0306-4549(97)00003-0. 
  20. M.A. Hassan, F.M. Ebrahim, M.G. Moustafa, Z.M. Abd El-Fattah, M.M. El-Okr, Unraveling the hidden Urbach edge and Cr6+ optical transitions in borate glasses, J. Non-Cryst. Solids 515 (2019) 157-164, https://doi.org/10.1016/j.jnoncrysol.2019.02.026. 
  21. A. Un, Investigation of dopant effect on some TL dosimeters containing boron, Radiat. Phys. Chem. 85 (2013) 23-35, https://doi.org/10.1016/j.radphyschem.2012.10.016. 
  22. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040. 
  23. C. Bootjomchai, R. Laopaiboon, S. Pencharee, J. Laopaiboon, Elastic moduli of borosilicate glasses doped with heavy metal oxides, J. Non-Cryst. Solids 388 (2014) 37-45, https://doi.org/10.1016/j.jnoncrysol.2014.01.039. 
  24. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J.G. Cadenas, I. Gonzalez, G.G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P.M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8. 
  25. A.E. Ersundu, M. Buyukyildiz, M.C. Ersundu, E. S, akar, M. Kurudirek, The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications, Prog. Nucl. Energy 104 (2018) 280-287, https://doi.org/10.1016/j.pnucene.2017.10.008. 
  26. A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20+x) PbO - 10 BaO - 10 Na2O - 10 MgO - (50-x) B2O3 glasses, Phys. B Condens. Matter 552 (2019) 110-118, https://doi.org/10.1016/j.physb.2018.10.001. 
  27. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (2018) 853-859, https://doi.org/10.1016/j.net.2018.12.014. 
  28. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2-WO3-GeO2 glasses using FLUKA code, Results Phys. 13 (2019) 102199, https://doi.org/10.1016/j.rinp.2019.102199. 
  29. M. Kurudirek, M. Buyukyildiz, Y. Ozdemir, Effective atomic number study of various alloys for total photon interaction in the energy region of 1keV-100GeV, Nucl. Instrum. Methods Phys. Res. 613 (2010) 251-256, https://doi.org/10.1016/j.nima.2009.11.061. 
  30. A.H. Abdalsalam, M.I. Sayyed, T. Ali Hussein, E. S, akar, M.H.A. Mhareb, B. Ceviz Sakar, B. Alim, K.M. Kaky, A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites, Chem. Phys. 523 (2019) 92-98, https://doi.org/10.1016/j.chemphys.2019.04.013. 
  31. A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses, Compos. B Eng. 172 (2019) 218-225, https://doi.org/10.1016/j.compositesb.2019.05.040. 
  32. M.W. Marashdeh, K.A. Mahmoud, CaO-enhanced polyester for safety: experimental study on fabrication, characterization, and gamma-ray attenuation, Radiochim. Acta 0 (2024), https://doi.org/10.1515/ract-2023-0265. 
  33. K.A. Mahmoud, M.W. Marashdeh, Clay-based bricks' rich illite mineral for gamma-ray shielding applications: an experimental evaluation of the effect of pressure rates on gamma-ray attenuation parameters, Open Chem. 21 (2023), https://doi.org/10.1515/chem-2023-0167. 
  34. M.I. Sayyed, M.F. Alrashedi, A.H. Almuqrin, M. Elsafi, Recycling and optimizing waste lab glass with Bi2O3 nanoparticles to use as a transparent shield for photons, J. Mater. Res. Technol. 17 (2022) 2073-2083, https://doi.org/10.1016/j.jmrt.2022.01.113. 
  35. Y. Al-Hadeethi, M.I. Sayyed, A.Z. Barasheed, M. Ahmed, M. Elsafi, Fabrication of lead free borate glasses modified by bismuth oxide for gamma ray protection applications, Materials 15 (2022) 789, https://doi.org/10.3390/ma15030789. 
  36. E. Hannachi, M.I. Sayyed, Y. Slimani, M. Elsafi, Experimental investigation on the physical properties and radiation shielding efficiency of YBa2Cu3Oy/M@M3O4 (M= Co, Mn) ceramic composites, J. Alloys Compd. 904 (2022) 164056, https://doi.org/10.1016/j.jallcom.2022.164056. 
  37. A.N. D'Souza, M.I. Sayyed, N. Karunakara, H. Al-Ghamdi, A.H. Almuqrin, M. Elsafi, M.U. Khandaker, S.D. Kamath, TeO2-SiO2-B2O3 glasses doped with CeO2 for gamma radiation shielding and dosimetry application, Radiat. Phys. Chem. 200 (2022) 110233, https://doi.org/10.1016/j.radphyschem.2022.110233. 
  38. H. Al-Ghamdi, H.M. Hemily, I.H. Saleh, Z.F. Ghataas, A.A. Abdel-Halim, M. I. Sayyed, S. Yasmin, A.H. Almuqrin, M. Elsafi, Impact of WO3-nanoparticles on silicone rubber for radiation protection efficiency, Materials 15 (2022) 5706, https://doi.org/10.3390/ma15165706. 
  39. R.A. Elsad, K.A. Mahmoud, Y.S. Rammah, A.S. Abouhaswa, Fabrication, structural, optical, and dielectric properties of PVC-PbO nanocomposites, as well as their gamma-ray shielding capability, Radiat. Phys. Chem. 189 (2021), https://doi.org/10.1016/j.radphyschem.2021.109753. 
  40. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, N. Dwaikat, Y.S. M. Alajerami, M. Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur Phys J Plus 136 (2021), https://doi.org/10.1140/epjp/s13360-020-01011-5. 
  41. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. Mater. Sci. Process 127 (2021), https://doi.org/10.1007/s00339-021-04409-9. 
  42. SCHOTT AG, Radiation Shielding Glasses, Hattenbergstrasse 10 55122 Mainz Germany, 2013. www.schott.com/advanced_optics. 
  43. P. Kaur, K.J. Singh, S. Thakur, P. Singh, B.S. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (2019) 367-377, https://doi.org/10.1016/j.saa.2018.08.038. 
  44. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, Eur. Phys. J. Plus 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6. 
  45. S.K. Chinthakayala, P. Gadige, V.S. Kollipara, G. Ramadurai, Gamma radiation shielding studies on highly dense barium bismuth borate glasses, Int. J. Appl. Glass Sci. 13 (2022) 211-222, https://doi.org/10.1111/ijag.16554. 
  46. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications, Appl. Phys. A 126 (2020) 68, https://doi.org/10.1007/s00339-019-3254-9.