DOI QR코드

DOI QR Code

Tensile Strength and Surface Characteristics of Mn Steel with Ti Addition

Ti을 첨가한 Mn 강의 인장특성과 표면특성

  • Ryung-kyung Hwang (Department of Nano Conversion Science & Engineering, Inje University) ;
  • Sung-Tae Yoon (Department of Nano Conversion Science & Engineering, Inje University) ;
  • Gyun-Yung Lee (Department of Nano Conversion Science & Engineering, Inje University) ;
  • Sun-Joong Hwang (DongNam Special Cast Steel Inc.)
  • 황령경 (인제대학교 나노융합공학과) ;
  • 윤성태 (인제대학교 나노융합공학과) ;
  • 이관영 (인제대학교 나노융합공학과) ;
  • 황선중 (동남특수강 주식회사)
  • Received : 2023.05.09
  • Accepted : 2023.12.05
  • Published : 2024.02.01

Abstract

In this study, in order to improve the lifespan of parts made of manganese steel, manganese steel was cast by varying the amount of Ti added to the steel. In order to confirm the characteristics of the cast material, processing characteristics including tensile and surface characteristics and bearing ratio were investigated. It was confirmed that when the amount of Ti added to high manganese steel exceeds 0.5%, the strength of the alloy is improved due to grain refinement, and fine carbides are formed inside the steel. This results in increased resistance to surface wear compared to the alloy with only Mn added. There was no significant difference in the increase in tensile strength as the Ti content in manganese steel was increased. However, inclusion of Ti showed a small but greater effect on wear resistance compared to Mn, and the size and the distribution of carbides become coarse depending on the Ti content. and was evenly distributed. It was confirmed that the strength and surface properties of manganese steel can be improved by the addition of Ti to improve the lifespan of parts made with this steel. It was found that Ti is effective in developing materials with excellent wear resistance due to refinement of dendrite crystal grains. In the samples where Ti was added, the carbide appears to increase the resistance to surface roughness, and due to the nature of Mn steel, surface hardening begins to occur, which appears to extend the life.

본 연구에서는 망간강을 소재로 하는 부품의 수명향상을 위해 망간강에 Ti의 첨가량을 변화하여 망간강을 주조하였으며, 주조한 소재의 특성을 확인하기 위하여 인장 및 표면 특성 그리고 베어링률 등 가공특성에 대해 조사하였다. 고망간강에 Ti 첨가 시 0.5%를 초과 시 결정립 미세화로 인한 합금의 강도가 향상되었으며 내부에 미세 탄화물이 형성시킴으로써 Mn만 첨가된 합금에 비해 표면의 마모에 대한 저항성을 높이는 결과를 나타냄을 확인하였다. 망간강에서 Ti의 함유량이 증가함으로 인해 인장강도가 증가함에는 큰 차이가 없었으나 마모성의 부분에서는 Ti이 Mn에 비해 마모성에는 미량이지만 더 큰 영향을 끼치며 Ti의 함량에 따라 탄화물의 크기 및 분포가 조대하고 균일하게 분포하였다. 망간강을 소재로 하는 부품의 수명향상을 위해 망간강에 Ti 첨가함으로써 강도 및 표면특성을 향상시킬수 있음을 확인하였다. Ti이 수지상정 결정립의 미세화로 인한 내마모성이 우수한 재질을 개발하는데 효과있음을 알 수 있었다. Ti가 첨가된 샘플에서 탄화물은 표면 거칠기에 대한 내성을 증가시키는 것으로 나타났으며 Mn강의 특성상 표면경화가 일어나기 시작하여 수명이 연장되는 것으로 보인다.

Keywords

References

  1. S.C. Kim, G.S. Park, S.W. Lee and G.H. Park, "Introduction to eco-friendly difficult-to-cut machining technology development trends", Korea Institute of Industrial Technology Evaluation and Planning, (July 2012) 28.
  2. S.H. Nam, S.W. Lee and H.J. Lee, "Issue 3-Hybrid processing process and system technology for high manganese steel materials", Korea Institute of Industrial Technology Evaluation and Planning, (July 2016) 54.
  3. G.W. Park, Korean Society of Automotive Engineers Spring Conference, Jeju (2013) 1684.
  4. S.G. Kang, J. Korean Society of Manufacturing Technology Engineers, 21(5) (2012) 755.
  5. M.S. Koo,, Effect of the alloying element titanium on the microstructure and mechanical properties of high manganese steel, (August 2018) 18.
  6. F. J. Maratray and T. E Norman, Revue de Metal (Jun 1961) 459.
  7. T. E. Norman, A, Solomon and D. V. Doane, Trans. AFS, 68 (1960) 287.
  8. Luton MJ , Dorvel R , Petkovic RA, Metall. Trans. A, 11 (1980) 411.
  9. Sh. Kheirandish, Sh. Mirdamadi and T.H.K Kharrazi, Effect of titanium on cast structur of high speed steel, Metal Science and Heat Treatment, 14 (April 1998).
  10. Calphad, Computational Thermodynamics Inc., Made in USA (2011).
  11. Peter, W. and Fischer, W. A., Arch. Eisenhuettenw, 19 (1948) 161.
  12. Tofaute, V. W. and Buettinghaus, A., Arch. Eisenhuettenw, 12 (1938) 33.
  13. Joanne L. Murray, Bulletin of Alloy Phase Diagrams, 2(3) (1981) 320.
  14. Bo, H., Wang, J., Duarte, L., Leinenbach, C., Liu, Lbin, Liu, Hshan and Jin, Zpeng, Transactions of Nonferrous Metals Society of China, 22(9) (2012) 2204.