DOI QR코드

DOI QR Code

아시아 여름 몬순에서의 지역별 극한 강수의 역학과 특성

Dynamics and Characteristics of Regional Extreme Precipitation in the Asian Summer Monsoon

  • 전하은 (부산대학교 대기환경과학과) ;
  • 하경자 (부산대학교 대기환경과학과) ;
  • 김혜렴 (부산대학교 대기환경과학과) ;
  • 오효은 (IBS 기후물리연구단)
  • Ha-Eun Jeon (Department of Atmospheric Sciences, Pusan National University) ;
  • Kyung-Ja Ha (Department of Atmospheric Sciences, Pusan National University) ;
  • Hye-Ryeom Kim (Department of Atmospheric Sciences, Pusan National University) ;
  • Hyoeun Oh (Center for Climate Physics, Institute for Basic Science)
  • 투고 : 2024.05.17
  • 심사 : 2024.07.26
  • 발행 : 2024.08.31

초록

In 2023, the World Meteorological Organization released a report on climate conditions in Asia, highlighting the region's high vulnerability to floods and the increasing severity and frequency of extreme precipitation events. While previous studies have largely concentrated on broader-scale phenomena such as the Asian monsoon, it is crucial to investigate the substantial characteristics of extreme precipitation for a better understanding. In this study, we analyze the spatiotemporal characteristics of extreme precipitation during summer and their affecting factors by decomposing the moisture budgets within specific Asian regions over 44 years (1979~2022). Our findings indicate that dynamic convergence terms (DY CON), which reflect changes in wind patterns, primarily drive extreme rainfall across much of Asia. In southern Asian sub-regions, particularly coastal areas, extreme precipitation is primarily driven by low-pressure systems, with DY CON accounting for 70% of the variance. However, in eastern Asia, both thermodynamic advection and nonlinear convergence terms significantly contribute to extreme precipitation. Notably, on the Korean Peninsula, thermodynamic advection plays an important role, driven by substantial moisture carried by strong southerly mean flow. Understanding these distinct characteristics of extreme rainfall across sub-regions is expected to enhance both predictability and resilience.

키워드

과제정보

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사의 말씀 드립니다. 본 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구가 수행되었습니다.

참고문헌

  1. Ajayamohan, R., S. A. Rao, and T. Yamagata, 2008: Influence of Indian Ocean Dipole on Poleward Propagation of Boreal Summer Intraseasonal Oscillations. J. Climate, 21, 5437-5454, doi:10.1175/2008JCLI1758.1.
  2. Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, doi:10.1029/2005JD006290.
  3. Ali, H., and V. Mishra, 2018: Contributions of dynamic and thermodynamic scaling in subdaily precipitation extremes in India. Geophys. Res. Lett., 45, 2352-2361, doi:10.1002/2018GL077065.
  4. Allan, R. P. , B. J. Soden, V. O. John, W. Ingram, and P. Good, 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.
  5. Chen, J., and S. Bordoni, 2016: Early summer response of the East Asian summer monsoon to atmospheric CO2 forcing and subsequent sea surface warming. J. Climate, 29, 5431-5446, doi:10.1175/JCLI-D-15-0649.1.
  6. Cubasch, U. , G. A. Meehl, G. J. Boer, R. J. Stouffer, M. Dix, A. Noda, C. A. Senior, and K. S. Yap, 2001: Projections of future climate change. In Climate Change 2001: The scientific basis. Contribution of WG1 to the Third Assessment Report of the IPCC (TAR), 525-582, Cambridge University Press.
  7. Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Climate Dyn., 38, 527-546, doi:10.1007/s00382-010-0977-x.
  8. Ding, Y., Y. Liu, Y. Sun, and Y. Song, 2010: Weakening of the Asian summer monsoon and its impact on the precipitation pattern in China. Int. J. Water Resour. Development, 26, 423-439, doi:10.1080/07900627.2010.492607.
  9. Do, H.-S., J. Kim, E.-J. Cha, E.-C. Chang, S.-W. Son, and G. Lee, 2023: Long-term change of summer mean and extreme precipitations in Korea and East Asia. Int. J. Climatol., 43, 3476-3492, doi:10.1002/joc.8039.
  10. Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.
  11. Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 1704-1711, doi:10.1002/2013GL059158.
  12. Fang, H., Y. Qiao, and M. Jian, 2023: Dynamic and thermodynamic causes of summer extreme precipitation over South China. Atmos.c Res., 293, 106894, doi:10.1016/j.atmosres.2023.106894.
  13. Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547-554, doi:10.1002/2013GL058499.
  14. Groisman, P. Y., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. climate, 18, 1326-1350, doi:10.1175/JCLI3339.1.
  15. Gusain, A., H. Vittal, S. Kulkarni, S. Ghosh, and S. Karmakar, 2019: Role of vertical velocity in improving finer scale statistical downscaling for projection of extreme precipitation. Theor. Appl. Climatol., 137, 791-804, doi:10.1007/s00704-018-2615-1.
  16. Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteor. Appl., 19, 200-215, doi:10.1002/met.1320.
  17. Ha, K.-J., S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristic and evaporative demand over Asia in CMIP6 simulations. Geophy. Res. Lett., 47, e2020GL087492, doi:10.1029/2020GL087492.
  18. Hassler, B., and A. Lauer, 2021: Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere, 12, 1462, doi:10.3390/atmos12111462.
  19. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  20. Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014: Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate-Part I: Past changes and future projections. Climate Dyn., 43, 2553-2568, doi:10.1007/s00382-014-2073-0.
  21. Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419-1444, doi:10.1175/JCLI4066.1.
  22. Kim, H.-A., J. Ho, G. Zhang, K.-J. Ha, S.-Y. Hong, and C.-H. Ho, 2023a: Polarimetric Radar Signatures in Various Lightning Activities During Seoul (Korea) Flood on August 8, 2022. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-023-00346-0.
  23. Kim, H.-R., M. Moon, J. Yun, and K.-J. Ha, 2023b: Trends and Spatio-Temporal Variability of Summer Mean and Extreme Precipitation across South Korea for 1973~2022. Asia-Pac. J. Atmos. Sci., 59, 385-398, doi:10.1007/s13143-023-00323-7.
  24. Lee, J.-Y., P.-C. Hsu, S. Moon, and K.-J. Ha, 2017: Influence of boreal summer intraseasonal oscillation on Korean precipitation and its long-term changes. Atmosphere, 27, 435-444, doi:10.14191/Atmos.2017.27.4.435.
  25. Li, D., T. Zhou, L. Zou, W. Zhang, and L. Zhang, 2018: Extreme high-temperature events over East Asia in 1.5℃ and 2℃ warmer futures: analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett., 45, 1541-1550, doi:10.1002/2017GL076753.
  26. Li, J., R. Ding, Z. Wu, Q. Zhong, B. Li, and J. Li, 2019: Inter-decadal change in potential predictability of the East Asian summer monsoon. Theor. Appl. Climatol., 136, 403-415, doi:10.1007/s00704-018-2482-9.
  27. Li, J., Y. Zhao, D. Chen, Y. Kang, and H. Wang, 2022: Future precipitation changes in three key sub-regions of East Asia: the roles of thermodynamics and dynamics. Climate Dyn., 59, 1377-1398, doi:10.1007/s00382-021-06043-w.
  28. Li, X. , M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 4107-4125, doi:10.1175/JCLI-D-14-00559.1.
  29. Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, and P. Whetton, 2000: Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81, 427-436, doi:10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2.
  30. Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378-381, doi:10.1038/nature09763.
  31. Moon, S., and K.-J. Ha, 2019: Early Indian summer monsoon onset driven by low soil moisture in the Iranian desert. Geophys. Res. Lett., 46, 10568-10577, doi:10.1029/2019GL084520.
  32. Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Clim. Atmos. Sci., 3, doi:10.1038/s41612-020-00151-w.
  33. Oh, H., and K.-J. Ha, 2016: Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon. Climate Dyn., 47, 2025-2037, doi:10.1007/s00382-015-2948-8.
  34. Oh, H., K.-J. Ha, and A. Timmermann, 2018: Disentangling impacts of dynamic and thermodynamic components on late summer rainfall anomalies in East Asia. J. Geophys. Res. Atmos., 123, 8623-8633, doi:10.1029/2018JD028652.
  35. Oh, H., K.-J. Ha, and J.-Y. Jeong, 2023: Identifying Dynamic and Thermodynamic Contributions to the Record-Breaking 2022 Summer Extreme Rainfall Events in Korea. Asia-Pac. J. Atmos. Sci., 1-13, doi:10.1007/s13143-023-00334-4.
  36. Pall, P., T. Aina, D. A. Stone, P. A. Stott, T. Nozawa, A. G. J. Hilberts, D. Lohmann, and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382-385, doi:10.1038/nature09762.
  37. Pfahl, S., P. A. O'Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 7, 423-427, doi:10.1038/nclimate3287.
  38. Roxy, M. K., S. Ghosh, A. Pathak, R. Athulya, M. Mujumdar, R. Murtugudde, T. Pascal, and M. Rajeevan, 2017: A threefold rise in widespread extreme rain events over central India. Nature Commun., 8, 1-11, doi:10.1038/s41467-017-00744-9.
  39. Sharma, T., H. Vittal, S. Karmakar, and S. Ghosh, 2020: Increasing agricultural risk to hydro-climatic extremes in India. Environ. Res. Lett., 15, 034010, doi:10.1088/1748-9326/ab63e1.
  40. Sorland, S. L., and A. Sorteberg, 2015: The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus A: Dyn. Meteor. Oceanogr., 67, 27039, doi:10.3402/tellusa.v67.27039.
  41. Sudharsan, N. , S. Karmakar, H. J. Fowler, and V. Hari, 2020: Large-scale dynamics have greater role than thermodynamics in driving precipitation extremes over India. Climate Dyn., 55, 2603-2614, doi:10.1007/s00382-020-05410-3.
  42. Takahashi, H. G., and H. Fujinami, 2021: Recent decadal enhancement of Meiyu-Baiu heavy rainfall over East Asia. Sci. Reports, 11, 13665, doi:10.1038/s41598-021-93006-0.
  43. Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339, doi:10.1023/A:1005488920935.
  44. Vittal, H., S. Ghosh, S. Karmakar, A. Pathak, and R. Murtugudde, 2016: Lack of dependence of Indian summer monsoon rainfall extremes on temperature: an observational evidence. Sci. Reports, 6, 31039, doi:10.1038/srep31039.
  45. Vittal, H., S. Karmakar, S. Ghosh, and R. Murtugudde, 2020: A comprehensive India-wide social vulnerability analysis: highlighting its influence on hydro-climatic risk. Environ. Res. Lett., 15, 014005, doi:10.1088/1748-9326/ab6499.
  46. Walker, J. M., S. Bordoni, and T. Schneider, 2015: Interannual variability in the large-scale dynamics of the South Asian summer monsoon. J. Climate, 28, 3731-3750, doi:10.1175/JCLI-D-14-00612.1.
  47. Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463, doi:10.1175/2008JCLI2183.1.
  48. Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn., 42, 83-100, doi:10.1007/s00382-013-1769-x.
  49. Wang, Z., J. Xu, Z. Zeng, M. Ke, and X. Feng, 2024: Understanding the 2022 extreme Dragon-boat rainfall in South China from the combined land and ocean forcing. Asia-Pac. J. Atmos. Sci., doi:10.1007/s13143-024-00356-6.
  50. Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos., 114, doi:10.1029/2009JD011733.
  51. Xu, L., T. Zhang, A. Wang, W. Yu, and S. Yang, 2022: Variations of summer extreme and total precipitation over Southeast Asia and associated atmospheric and oceanic features. J. Climate, 35, 6395-6409, doi:10.1175/JCLI-D-21-1020.1.
  52. Yao, C., W. Qian, S. Yang, and Z. Lin, 2010: Regional features of precipitation over Asia and summer extreme precipitation over Southeast Asia and their associations with atmospheric-oceanic conditions. Meteor. Atmos. Phys., 106, 57-73, doi:10.1007/s00703-009-0052-5.
  53. Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2010: Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia. J. Climate, 23, 3599-3612, doi:10.1175/2010JCLI3431.1.
  54. Zhao, Y., D. Chen, Y. Deng, S.-W. Son, X. Wang, D. Di, M. Pan, and X. Ma, 2021: How were the eastward-moving heavy rainfall events from the Tibetan Plateau to the lower reaches of the Yangtze River enhanced?. J. Climate, 34, 607-620, doi:10.1175/JCLI-D-20-0226.1.