Acknowledgement
The authors thank the support of National MCF Energy R&D Program (Grant No. 2022YFE03140000) and Zhejiang Province "Jianbing" R&D Program for Tackling New Problems (Grant No. 2022C03021).
References
- C. Luo, L. Xu, L. Zong, H. Shen, S. Wei, Research status of tungsten-based plasma-facing materials: a review, Fusion Eng. Des. 190 (2023) 113487, https://doi.org/10.1016/j.fusengdes.2023.113487.
- T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac, A. Durocher, M. Merola, J. Linke, Th Loewenhoff, G. Pintsuk, M. Wirtz, I. Uytdenhouwen, Use of tungsten material for the ITER divertor, Nucl. Mater. Energy. 9 (2016) 616-622, https://doi.org/10.1016/j.nme.2016.07.003.
- V. Philipps, Tungsten as material for plasma-facing components in fusion devices, J. Nucl. Mater. 415 (2011) S2-S9, https://doi.org/10.1016/j.jnucmat.2011.01.110.
- Y. Meng, J. Zhang, C. Duan, C. Chen, X. Feng, Y. Shen, Microstructures and properties of W-Cu functionally graded composite coatings on copper substrate via high-energy mechanical alloying method, Adv. Powder Technol. 26 (2015) 392-400, https://doi.org/10.1016/j.apt.2014.11.009.
- H.C. Man, K.Y. Chiu, X. Guo, Laser surface micro-drilling and texturing of metals for improvement of adhesion joint strength, Appl. Surf. Sci. 256 (2010) 3166-3169, https://doi.org/10.1016/j.apsusc.2009.11.092.
- Q. Cai, W. Liu, Y. Ma, H. Liu, Microstructure, residual stresses and mechanical properties of diffusion bonded tungsten-steel joint using a V/Cu composite barrier interlayer, Int. J. Refract. Met. Hard Mater. 48 (2015) 312-317, https://doi.org/10.1016/j.ijrmhm.2014.09.002.
- F. Wang, G.-N. Luo, J. Huang, Y. Liu, Properties improvement of atmospheric plasma sprayed tungsten coating by annealing, Surf. Coat. Technol. 358 (2019) 276-281, https://doi.org/10.1016/j.surfcoat.2018.11.046.
- B. Wang, J. Zhu, T. Xie, L. Fu, W. Yang, D. Li, L. Zhou, A new Cu-W bionic shell pearl multilayer structure, Surf. Coat. Technol. 461 (2023) 129433, https://doi.org/10.1016/j.surfcoat.2023.129433.
- R.S. Parihar, S. Gangi Setti, R.K. Sahu, Effect of sintering parameters on microstructure and mechanical properties of self-lubricating functionally graded cemented tungsten carbide, J. Manuf. Process. 45 (2019) 498-508, https://doi.org/10.1016/j.jmapro.2019.07.025.
- Gerald Pintsuk, Akira Hasegawa, 6.02 - tungsten as a plasma-facing material, in: R. J.M. Konings, R.E. Stoller (Eds.), Compr. Nucl. Mater, second ed., Elsevier, Oxford, 2020, pp. 19-53, https://doi.org/10.1016/B978-0-12-803581-8.11696-0.
- I.S. Batra, G.B. Kale, T.K. Saha, A.K. Ray, J. Derose, J. Krishnan, Diffusion bonding of a Cu-Cr-Zr alloy to stainless steel and tungsten using nickel as an interlayer, Mater. Sci. Eng. A. 369 (2004) 119-123, https://doi.org/10.1016/j.msea.2003.10.296.
- C. Sun, S. Wang, W. Guo, W. Shen, C. Ge, Bonding interface of W-CuCrZr Explosively Welded composite Plates for plasma facing components, J. Mater. Sci. Technol. 30 (2014) 1230-1234, https://doi.org/10.1016/j.jmst.2014.11.014.
- M. Tokitani, Y. Hamaji, Y. Hiraoka, S. Masuzaki, H. Tamura, H. Noto, T. Tanaka, T. Muroga, A. Sagara, Deformation and fracture behavior of the W/ODS-Cu joint fabricated by the advanced brazing technique, Fusion Eng. Des. 146 (2019) 1733-1736, https://doi.org/10.1016/j.fusengdes.2019.03.027.
- Z. Liu, A. Wang, P. Liu, J. Xie, Investigation on the WC/Cu interfacial bonding properties: first-principles prediction and experimental verification, Int. J. Refract. Met. Hard Mater. 106 (2022) 105872, https://doi.org/10.1016/j.ijrmhm.2022.105872.
- L. Peng, Y. Mao, Y. Zhang, L. Xi, Q. Deng, G. Wang, Microstructural and mechanical characterizations of W/CuCrZr and W/steel joints brazed with Cu-22TiH2 filler, J. Mater. Process. Technol. 254 (2018) 346-352, https://doi.org/10.1016/j.jmatprotec.2017.11.056.
- L. Sun, X. Song, Y. Dong, J. Zou, X. Li, L. Ni, L. Gao, S. Liang, Microstructure and strength of diffusion bonded 304 stainless steel/tungsten joints using different interlayers, J. Manuf. Process. 65 (2021) 428-434, https://doi.org/10.1016/j.jmapro.2021.03.050.
- C. Chu, Q. Zhang, H. Zhuo, Z. Zhang, Y. Zhu, Y. Fu, Investigation on the ablation behavior of cemented tungsten carbide by a nanosecond UV laser, J. Manuf. Process. 71 (2021) 461-471, https://doi.org/10.1016/j.jmapro.2021.09.038.
- V. Furlan, A.G. Demir, B. Previtali, Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling, Opt Laser. Technol. 75 (2015) 164-172, https://doi.org/10.1016/j.optlastec.2015.06.030.
- G. Yang, Y. Hao, W. Song, Y. Ma, Effects of some parameters on formation and structure of infiltrated (surface) layer prepared by vacuum infiltration casting technique, Surf. Coat. Technol. 201 (2006) 1711-1717, https://doi.org/10.1016/j.surfcoat.2006.02.054.
- K. Zhou, W.G. Chen, J.J. Wang, G.J. Yan, Y.Q. Fu, W-Cu composites reinforced by copper coated graphene prepared using infiltration sintering and spark plasma sintering: a comparative study, Int. J. Refract. Met. Hard Mater. 82 (2019) 91-99, https://doi.org/10.1016/j.ijrmhm.2019.03.026.
- M. Ghasri-Khouzani, X. Li, A.A. Bogno, Z. Chen, J. Liu, H. Henein, A.J. Qureshi, Fabrication of aluminum/stainless steel bimetallic composites through a combination of additive manufacturing and vacuum-assisted melt infiltration casting, J. Manuf. Process. 69 (2021) 320-330, https://doi.org/10.1016/j.jmapro.2021.07.047.
- M. Ghasri-Khouzani, H. Peng, R. Attardo, P. Ostiguy, J. Neidig, R. Billo, D. Hoelzle, M.R. Shankar, Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes, J. Manuf. Process. 37 (2019) 274-280, https://doi.org/10.1016/j.jmapro.2018.12.005.
- A. Simchi, F. Petzoldt, H. Pohl, On the development of direct metal laser sintering for rapid tooling, J. Mater. Process. Technol. 141 (2003) 319-328, https://doi.org/10.1016/S0924-0136(03)00283-8.
- T. Lu, C. Chen, P. Li, C. Zhang, W. Han, Y. Zhou, C. Suryanarayana, Z. Guo, Enhanced mechanical and electrical properties of in situ synthesized nano-tungsten dispersion-strengthened copper alloy, Mater. Sci. Eng. A. 799 (2021) 140161, https://doi.org/10.1016/j.msea.2020.140161.
- M. Li, S.J. Zinkle, 4.20 - physical and mechanical properties of copper and copper alloys, in: R.J.M. Konings (Ed.), Compr. Nucl. Mater., Elsevier, Oxford, 2012, pp. 667-690, https://doi.org/10.1016/B978-0-08-056033-5.00122-1.
- D. Jiang, J. Long, J. Han, M. Cai, Y. Lin, P. Fan, H. Zhang, M. Zhong, Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures, Mater. Sci. Eng. A. 696 (2017) 429-436, https://doi.org/10.1016/j.msea.2017.04.063.
- E. de Wilde, I. Bellemans, M. Campforts, M. Guo, B. Blanpain, N. Moelans, K. Verbeken, Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions, Trans. Nonferrous Met. Soc. China. 26 (2016) 2770-2783, https://doi.org/10.1016/S1003-6326(16)64344-3.