DOI QR코드

DOI QR Code

Europium-driven Alloy 709 corrosion in static FLiNaK molten salt at 700 ℃

  • Taiqi Yin (Nuclear Materials and Fuel Cycle Center, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University) ;
  • Amanda Leong (Nuclear Materials and Fuel Cycle Center, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University) ;
  • Jinsuo Zhang (Nuclear Materials and Fuel Cycle Center, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University)
  • Received : 2023.03.09
  • Accepted : 2023.12.11
  • Published : 2024.05.25

Abstract

The effect of europium-driven corrosion behavior of Alloy 709 in FLiNaK molten salt was investigated by static immersion tests at 700 ℃. It was found that the corrosion of Alloy 709 increased after the addition of EuF3, even though the standard reduction potential of Eu(III)/Eu(II) was negative than those of Fe(II)/Fe, Ni(II)/Ni and Cr (II)/Cr. The presence of Eu(III) led to deeper corrosion attack layers and more pits on the steel surface in comparison with corrosion in blank FLiNaK. However, the addition of Eu(III) seemed to have a role in reducing surface cracking that was explored in corrosion by blank FLiNaK, which depended on Eu(III) concentration.

Keywords

Acknowledgement

Taiqi Yin gratefully acknowledges the financial support from China Scholarship Council, and the acceptance/support by the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, USA. The authors would like to acknowledge Qiufeng Yang and Weiqian Zhuo for discussion.

References

  1. R.R. Romatoski, L. Hu, Fluoride salt coolant properties for nuclear reactor applications: a review, Ann. Nucl. Energy 109 (2017) 635-647, https://doi.org/10.1016/j.anucene.2017.05.036. 
  2. N.S. Patel, V. Pavlik, M. Boca, High-temperature corrosion behavior of superalloys in molten salts-a review, Crit. Rev. Solid State Mater. Sci. 42 (1) (2017) 83-97, https://doi.org/10.1080/10408436.2016.1243090. 
  3. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77 (2014) 308-319, https://doi.org/10.1016/j.pnucene.2014.02.014. 
  4. J.S. Zhang, Impurities in primary coolant salt of FHRs: chemistry, impact, and removal methods, Energy Technol. 7 (10) (2019), 1900016, https://doi.org/10.1002/ente.201900016. 
  5. M.S. Sohal, M.A. Ebner, P. Sabharwall, P. Sharpe, Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties, Idaho National Laboratory (INL), 2010, https://doi.org/10.2172/980801. INL/EXT-10-18297. 
  6. L.C. Olson, J.W. Ambrosek, K. Sridharan, M.H. Anderson, T.R. Allen, Materials corrosion in molten LiF-NaF-KF salt, J. Fluor. Chem. 130 (1) (2009) 67-73, https://doi.org/10.1016/j.jfluchem.2008.05.008. 
  7. R. Sellers, W. Cheng, M. Anderson, K. Sridharan, C. Wang, T. Allen, Materials corrosion in molten LiF-NaF-KF eutectic salt under different reduction-oxidation conditions, in: Proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP), vol. 12, Chicago, USA, 2012, 12189. June 24-28. 
  8. M. Liu, J. Zheng, Y. Lu, Z. Li, Y. Zou, X. Yu, X. Zhou, Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques, J. Nucl. Mater. 440 (1-3) (2013) 124-128, https://doi.org/10.1016/j.jnucmat.2013.04.056. 
  9. H. Ai, X. Ye, L. Jiang, B. Leng, M. Shen, Z. Li, Y. Jia, J. Wang, X. Zhou, Y. Xie, On the possibility of severe corrosion of a Ni-W-Cr alloy in fluoride molten salts at high temperature, Corrosion Sci. 149 (2019) 218-225, https://doi.org/10.1016/j.corsci.2019.01.012. 
  10. X. Ding, H. Sun, G. Yu, X. Zhou, Corrosion behavior of Hastelloy N and 316L stainless steel in molten LiF-NaF-KF, J. Chin. Soc. Corrosion Protect 35 (6) (2016) 543-548, https://doi.org/10.11902/1005.4537.2014.275. 
  11. Q. Dai, X. Ye, H. Ai, S. Chen, L. Jiang, J. Liang, K. Yu, B. Leng, Z. Li, X. Zhou, Corrosion of Incoloy 800H alloys with nickel cladding in FLiNaK salts at 850℃, Corrosion Sci. 133 (2018) 349-357, https://doi.org/10.1016/j.corsci.2018.01.026. 
  12. M. Kondo, T. Nagasaka, V. Tsisar, A. Sagara, T. Muroga, T. Watanabe, T. Oshima, Y. Yokoyama, H. Miyamoto, E. Nakamura, Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions, Fusion Eng. Des. 85 (7-9) (2010) 1430-1436, https://doi.org/10.1016/j.fusengdes.2010.03.064. 
  13. F.Y. Ouyang, C.H. Chang, B.C. You, T.K. Yeh, J.J. Kai, Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments, J. Nucl. Mater. 437 (1-3) (2013) 201-207, https://doi.org/10.1016/j.jnucmat.2013.02.021. 
  14. F.Y. Ouyang, C.H. Chang, J.J. Kai, Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments, J. Nucl. Mater. 446 (1-3) (2014) 81-89, https://doi.org/10.1016/j.jnucmat.2013.11.045. 
  15. Y.L. Wang, Q. Wang, H.J. Liu, C.L. Zeng, Effects of the oxidants H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K) F, Corrosion Sci. 103 (2016) 268-282, https://doi.org/10.1016/j.corsci.2015.11.032. 
  16. H. Ai, M. Shen, H. Sun, K.P. Dolan, C. Wang, M. Ge, H. Yin, X. Li, H. Peng, N. Li, Effects of O2- additive on corrosion behavior of Fe-Cr-Ni alloy in molten fluoride salts, Corrosion Sci. 150 (2019) 175-182, https://doi.org/10.1016/j.corsci.2019.01.040. 
  17. Q. Liu, H. Sun, H. Yin, L. Guo, J. Qiu, J. Lin, Z. Tang, Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles, Corrosion Sci. 160 (2019), 108174, https://doi.org/10.1016/j.corsci.2019.108174. 
  18. Q. Liu, B. Leng, J. Qiu, H. Yin, J. Lin, Z. Tang, Effect of graphite particles in molten LiF-NaF-KF eutectic salt on corrosion behaviour of GH3535 alloy, Corrosion Sci. 168 (2020), 108581, https://doi.org/10.1016/j.corsci.2020.108581. 
  19. Y. Zhu, J. Qiu, J. Hou, W. Liu, H. Chen, H. Ai, G. Yu, J. Wang, X. Zhou, Effects of SO42- ions on the corrosion of GH3535 weld joint in FLiNaK molten salt, J. Nucl. Mater. 492 (2017) 122-127, https://doi.org/10.1016/j.jnucmat.2017.05.020. 
  20. J. Qiu, B. Leng, H. Liu, D.D. Macdonald, A. Wu, Y. Jia, W. Xue, G. Yu, X. Zhou, Effect of SO42- on the corrosion of 316L stainless steel in molten FLiNaK salt, Corrosion Sci. 144 (2018) 224-229, https://doi.org/10.1016/j. corsci.2018.08.057. 
  21. H. Ai, Y. Liu, M. Shen, H. Liu, Y. Chen, X. Yang, H. Liu, Y. Qian, J. Wang, Dissolved valence state of iron fluorides and their effect on Ni-based alloy in FLiNaK salt, Corrosion Sci. 192 (2021), 109794, https://doi.org/10.1016/j.corsci.2021.109794. 
  22. H. Peng, M. Shen, C. Wang, T. Su, Y. Zuo, L. Xie, Electrochemical investigation of the stable chromium species in molten FLINAK, RSC Adv. 5 (94) (2015) 76689-76695, https://doi.org/10.1039/C5RA09919F. 
  23. V. Pavlik, M. Kontrik, M. Boca, Corrosion behavior of Incoloy 800H/HT in the fluoride molten salt FLiNaK+ MFx (MFx= CrF3, FeF2, FeF3 and NiF2), New J. Chem. 39 (12) (2015) 9841-9847, https://doi.org/10.1039/C5NJ01839K. 
  24. Y. Wang, H. Liu, G. Yu, J. Hou, C. Zeng, Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li, Na, K) F at 700℃, J. Fluor. Chem. 178 (2015) 14-22, https://doi.org/10.1016/j.jfluchem.2015.06.014. 
  25. H. Yin, J. Qiu, H. Liu, W. Liu, Y. Wang, Z. Fei, S. Zhao, X. An, J. Cheng, T. Chen, Effect of CrF3 on the corrosion behaviour of Hastelloy-N and 316L stainless steel alloys in FLiNaK molten salt, Corrosion Sci. 131 (2018) 355-364, https://doi.org/10.1016/j.corsci.2017.12.008. 
  26. X. Ye, H. Ai, Z. Guo, H. Huang, L. Jiang, J. Wang, Z. Li, X. Zhou, The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS, Corrosion Sci. 106 (2016) 249-259, https://doi.org/10.1016/j.corsci.2016.02.010. 
  27. S. Guo, N. Shay, Y. Wang, W. Zhou, J. Zhang, Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept, J. Nucl. Mater. 496 (2017) 197-206, https://doi.org/10.1016/j.jnucmat.2017.09.027. 
  28. I. Barin, G. Platzki, Thermochemical Data of Pure Substances, Wiley Online Library, 1989, https://doi.org/10.1002/9783527619825. 
  29. W. Zhou, Y. Yang, G. Zheng, K.B. Woller, P.W. Stahle, A.M. Minor, M.P. Short, Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt, Nat. Commun. 11 (1) (2020) 1-7, https://doi.org/10.1038/s41467-020-17244-y. 
  30. S.W. McAlpine, N.C. Skowronski, W. Zhou, G.T. Zheng, M.P. Short, Corrosion of commercial alloys in FLiNaK molten salt containing EuF3 and simulant fission product additives, J. Nucl. Mater. 532 (2020), 151994, https://doi.org/10.1016/j.jnucmat.2020.151994. 
  31. A. Leong, J. Zhang, S.D. Rountree, Kinetics of corrosion and oxidation of Fe-and Ni-based alloys by molten fluoride salt, High Temp. Corro. Mater. 99 (2023) 375-397, https://doi.org/10.1007/s11837-023-05931-2. 
  32. F.R. Chien, R. Brown, Cyclic oxidation of Haynes 230 alloy, J. Mater. Sci. 27 (6) (1992) 1514-1520, https://doi.org/10.1007/BF00542912. 
  33. Y. Wu, C. Liu, B. Leng, L. Jiang, X. Ye, X. Li, Z. Li, X. Zhou, Effect of high temperature molten salt corrosion on the microstructure of a Co-Mo-Cr-Si wear resistant alloy, Mater. Char. 179 (2021), 111377, https://doi.org/10.1016/j.matchar.2021.111377. 
  34. S. Guo, J. Zhang, W. Wu, W. Zhou, Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications, Prog. Mater. Sci. 97 (2018) 448-487, https://doi.org/10.1016/j.pmatsci.2018.05.003. 
  35. S. Guo, W. Zhuo, Y. Wang, J. Zhang, Europium induced alloy corrosion and cracking in molten chloride media for nuclear applications, Corrosion Sci. 163 (2020), 108279, https://doi.org/10.1016/j.corsci.2019.108279. 
  36. J. Redman, Effect of Fuel Composition on the Equilibria 3CrF2=2CrF3+Cr and 3FeF2=2FeF3+Fe, Oak Ridge National Lab.(ORNL), 1959. ORNL-2626.