DOI QR코드

DOI QR Code

Development of supporting platform for the fine flow characteristics of reactor core

  • 투고 : 2023.05.23
  • 심사 : 2023.12.10
  • 발행 : 2024.05.25

초록

This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.

키워드

참고문헌

  1. M. Conner, Y.A. Hassan, E.E. Dominguez-Ontiveros, Hydraulic benchmark data for PWR mixing vane grid, Nucl. Eng. Des. 264 (2013) 97-102.  https://doi.org/10.1016/j.nucengdes.2012.12.001
  2. S. Bhattacharjee, G. Ricciardi, S. Viazzo, Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics, Nucl. Eng. Des. 317 (2017) 22-43.  https://doi.org/10.1016/j.nucengdes.2017.03.011
  3. S.K. Chang, S.K. Moon, W.P. Baek, Y.D. Choi, Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices, Nucl. Eng. Des. 238 (2008) 600-609.  https://doi.org/10.1016/j.nucengdes.2007.02.037
  4. T. Nguyen, Y. Hassan, Stereoscopic particle image velocimetry measurements of flow in a rod bundle with a spacer grid and mixing vanes at a low Reynolds number, Int. J. Heat Fluid Flow 67 (2017) 202-219.  https://doi.org/10.1016/j.ijheatfluidflow.2017.08.011
  5. W. Qu, J. Xiong, S. Chen, Qiu, X. Cheng, High-fidelity PIV measurement of cross flow in 5×5 rod bundle with mixing vane grids, Nucl. Eng. Des. 344 (2019) 131-143.  https://doi.org/10.1016/j.nucengdes.2019.01.021
  6. H. Yu, M. Wang, R. Cai, D. Zhang, W. Tian, S. Qiu, G.H. Su, Development and validation of boron diffusion model in nuclear reactor core subchannel analysis, Ann. Nucl. Energy 130 (2019) 208-217.  https://doi.org/10.1016/j.anucene.2019.02.046
  7. H. Ju, M. Wang, C. Chen, X. Zhao, M. Zhao, W. Tian, G.H. Su, S. Qiu, Numerical study on the turbulent mixing in channel with Large Eddy Simulation (LES) using spectral element method, Nucl. Eng. Des. 348 (2019) 169-176.  https://doi.org/10.1016/j.nucengdes.2019.04.017
  8. Mingjun Wang, Yingjie Wang, Wenxi Tian, Suizheng Qiu, G.H. Su, Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Ann. Nucl. Energy (2021) 150. 
  9. X. Wang, R. Wang, S. Du, J. Chen, S. Tan, Flow visualization and mixing quantification in a rod bundle using laser induced fluorescence, Nucl. Eng. Des. 305 (2016) 1-8.  https://doi.org/10.1016/j.nucengdes.2016.01.007
  10. J. Xiong, R. Cheng, C. Lu, X. Chai, X. Liu, X. Cheng, CFD simulation of swirling flow induced by twist vanes in a rod bundle, Nucl. Eng. Des. 338 (2018) 52-62.  https://doi.org/10.1016/j.nucengdes.2018.08.003
  11. W. Qu, J. Xiong, S. Chen, Z. Qiu, J. Deng, X. Cheng, PIV measurement of turbulent flow downstream of mixing vane spacer grid in 5×5 rod bundle, Ann. Nucl. Energy 132 (2019) 277-287.  https://doi.org/10.1016/j.anucene.2019.04.016
  12. Lei Jin, Shanshan Bu, Junze Jiang, Hanzhou Liu, Dewen Yuan, Deqi Chen, Numerical investigation on thermal-hydraulic performance in 7×7 rod bundle with spacer grid and guide tubes, Int. J. Therm. Sci. 160 (2021), 106675. 
  13. U. Bieder, C. Genrault, CFD analysis of intra and inter fuel assembly mixing, Ann. Nucl. Energy 135 (2020), 106977.
  14. G. Chen, Z. Zhang, Z. Tian, L. Li, X. Dong, Challenge analysis and schemes design for the CFD simulation of PWR, Sci. Technol. Nucl. Installat. (2017) 1-15. 
  15. Xi Chen, Sijia Du, Yu Zhang, Hongxing Yu, Songwei Li, Huanhuan Peng, Wei Wang, Wei Zeng, Validation of CFD analysis for rod bundle flow test with vaned spacer grids, Ann. Nucl. Energy 109 (2017) 370-379.  https://doi.org/10.1016/j.anucene.2017.05.055
  16. Luigi Capone, Sofiane Benhamadouche, A. Yassin, Hassan, Source terms modeling for spacer grids with mixing vanes for CFD simulations in nuclear reactors, Comput. Fluids 126 (2016) 141-152.  https://doi.org/10.1016/j.compfluid.2015.11.011
  17. Moyses A. Navarro, Andre A.C. Santos, Evaluation of a numeric procedure for flow simulation of a 5×5 PWR rod bundle with a mixing vane spacer, Prog. Nucl. Energy 53 (2011) 1190-1196.  https://doi.org/10.1016/j.pnucene.2011.08.002
  18. Ronghua Chen, Maolin Tian, Sen Chen, Wenxi Tian, G.H. Su, Suizheng Qiu, Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method, Ann. Nucl. Energy 104 (2017) 178-190.  https://doi.org/10.1016/j.anucene.2017.02.020
  19. G. Chen, Z. Zhang, Z. Tian, L. Li, X. Dong, H. Ju, Design of a CFD scheme using multiple RANS models for PWR, Ann. Nucl. Energy 102 (2017) 349-358.  https://doi.org/10.1016/j.anucene.2016.12.030
  20. G. Chen, J. Wang, Z. Zhang, Z. Tian, L. Li, H. Kang, Y. Jin, Distributed-parallel CFD computation for all fuel assemblies in PWR core, Ann. Nucl. Energy 141 (2020), 107340. 
  21. G. Chen, H. Qian, L. Li, Y. Yu, Z. Zhang, Z. Tian, X. Li, Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core, Nucl. Eng. Technol. 53 (2021) 3171-3181.  https://doi.org/10.1016/j.net.2021.04.008
  22. G. Chai, Measurement on power distribution of reactor core, Chin. J. Res. Nucl. Power Operat. (2003) 641-646. 
  23. Z. Karoutas, C. Gu, B. Sholin, 3-D flow analyses for design of nuclear fuel spacer, in: Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-7), 1995, pp. 3153-3174. New York, USA.