DOI QR코드

DOI QR Code

Vitronectin regulates osteoclastogenesis and bone remodeling in a mouse model of osteoporosis

  • Mari Nakashima (Graduate School of Humanities and Sciences, Ochanomizu University) ;
  • Akiko Suzuki (Graduate School of Humanities and Sciences, Ochanomizu University) ;
  • Kei Hashimoto (Institute for Human Life Science, Ochanomizu University) ;
  • Mayu Yamashita (Graduate School of Humanities and Sciences, Ochanomizu University) ;
  • Yoko Fujiwara (Graduate School of Humanities and Sciences, Ochanomizu University) ;
  • Yasunori Miyamoto (Graduate School of Humanities and Sciences, Ochanomizu University)
  • Received : 2023.09.26
  • Accepted : 2024.03.06
  • Published : 2024.06.30

Abstract

Vitronectin (VN) is an extracellular matrix protein with a crucial role in regulating bone remodeling. In this study, we aimed to investigate the effect of VN deficiency in a mouse model of osteoporosis induced by ovariectomy (OVX). The findings revealed that the absence of VN led to an increase in the activity of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, in the plasma of OVX-operated mice. TRAP staining further demonstrated that VN deficiency resulted in a higher number of osteoclasts within the femurs of OVX-operated mice. X-ray micro-computed tomography analysis of the femurs in OVX-operated mice indicated that VN deficiency significantly suppressed the OVX-induced increase of marrow area and total volume of bone. Additionally, we assessed structural model index (SMI) and degree of anisotropy (DA) as indices of osteoporosis. The results showed that VN deficiency effectively attenuated the OVX-induced increase in SMI and DA among OVX-operated mice. In summary, our study demonstrates the vital role of VN in regulating osteoclastogenesis and bone remodeling in the mouse model of osteoporosis.

Keywords

Acknowledgement

The authors wish to thank Prof. David Ginsburg (University of Michigan) for providing the VN knockout mice and Prof. Masao Hayashi (Ochanomizu University) for a VN antibody.

References

  1. Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res 2022;10:16. 
  2. Brun P, Scorzeto M, Vassanelli S, Castagliuolo I, Palu G, Ghezzo F, Messina GM, Iucci G, Battaglia V, Sivolella S, Bagno A, Polzonetti G, Marletta G, Dettin M. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomater 2013;9:6105-15.  https://doi.org/10.1016/j.actbio.2012.12.018
  3. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005;115:3318-25.  https://doi.org/10.1172/JCI27071
  4. Tella SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 2014;142:155-70.  https://doi.org/10.1016/j.jsbmb.2013.09.008
  5. Klein-Nulend J, van Oers RF, Bakker AD, Bacabac RG. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech 2015;48:855-65.  https://doi.org/10.1016/j.jbiomech.2014.12.007
  6. Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A 1983;80:4003-7.  https://doi.org/10.1073/pnas.80.13.4003
  7. Seiffert D. Detection of vitronectin in mineralized bone matrix. J Histochem Cytochem 1996;44:275-80.  https://doi.org/10.1177/44.3.8648088
  8. Min SK, Kang HK, Jung SY, Jang DH, Min BM. A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death Differ 2018;25:268-81.  https://doi.org/10.1038/cdd.2017.153
  9. Lee J, Min HK, Park CY, Kang HK, Jung SY, Min BM. A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A. J Clin Periodontol 2022;49:799-813.  https://doi.org/10.1111/jcpe.13671
  10. Date K, Sakagami H, Yura K. Regulatory properties of vitronectin and its glycosylation in collagen fibril formation and collagen-degrading enzyme cathepsin K activity. Sci Rep 2021;11:12023. 
  11. Fuller K, Ross JL, Szewczyk KA, Moss R, Chambers TJ. Bone is not essential for osteoclast activation. PLoS One 2010;5:e12837. 
  12. Dutra SGV, Felix ACS, Gastaldi AC, De Paula Facioli T, Vieira S, De Souza HCD. Chronic treatment with angiotensin-converting enzyme inhibitor increases cardiac fibrosis in young rats submitted to early ovarian failure. Auton Neurosci 2017;206:28-34.  https://doi.org/10.1016/j.autneu.2017.07.001
  13. Ikegami H, Kawawa R, Ichi I, Ishikawa T, Koike T, Aoki Y, Fujiwara Y. Excessive vitamin E intake does not cause bone loss in male or ovariectomized female mice fed normal or high-fat diets. J Nutr 2017;147:1932-7.  https://doi.org/10.3945/jn.117.248575
  14. Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 2002;143:3105-13.  https://doi.org/10.1210/endo.143.8.8954
  15. Feik SA, Thomas CD, Clement JG. Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 1997;191(Pt 3):407-16.  https://doi.org/10.1046/j.1469-7580.1997.19130407.x
  16. Thomas CD, Feik SA, Clement JG. Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences. J Anat 2005;206:115-25.  https://doi.org/10.1111/j.1469-7580.2005.00384.x
  17. Lee SH, Kim JN, Shin KJ, Koh KS, Song WC. Three-dimensional microstructures of the intracortical canals in the animal model of osteoporosis. Anat Cell Biol 2020;53:162-8.  https://doi.org/10.5115/acb.19.189
  18. Wang B, Dong Y, Tian Z, Chen Y, Dong S. The role of dendritic cells derived osteoclasts in bone destruction diseases. Genes Dis 2021;8:401-11.  https://doi.org/10.1016/j.gendis.2020.03.009
  19. Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci 2000:113(Pt 3):377-81.  https://doi.org/10.1242/jcs.113.3.377
  20. Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 2000;15:1477-88.  https://doi.org/10.1359/jbmr.2000.15.8.1477
  21. Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab 2000;18:177-84.  https://doi.org/10.1007/s007740070018
  22. Jung SY, Min BM. A vitronectin-derived dimeric peptide suppresses osteoclastogenesis by binding to c-Fms and inhibiting M-CSF signaling. Exp Cell Res 2022;418:113252. 
  23. Kang HK, Park CY, Jung SY, Jo SB, Min BM. A vitronectin-derived peptide restores ovariectomy-induced bone loss by dual regulation of bone remodeling. Tissue Eng Regen Med 2022;19:1359-76.  https://doi.org/10.1007/s13770-022-00486-w
  24. Gramoun A, Azizi N, Sodek J, Heersche JN, Nakchbandi I, Manolson MF. Fibronectin inhibits osteoclastogenesis while enhancing osteoclast activity via nitric oxide and interleukin-1β-mediated signaling pathways. J Cell Biochem 2010;111:1020-34.  https://doi.org/10.1002/jcb.22791
  25. Geblinger D, Addadi L, Geiger B. Nano-topography sensing by osteoclasts. J Cell Sci 2010;123(Pt 9):1503-10. Erratum in: J Cell Sci 2010;123:1814. 
  26. Mc Donnell P, Harrison N, Liebschner MA, Mc Hugh PE. Simulation of vertebral trabecular bone loss using voxel finite element analysis. J Biomech 2009;42:2789-96.  https://doi.org/10.1016/j.jbiomech.2009.07.038
  27. Ding M. Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand Suppl 2000;292:1-45.  https://doi.org/10.1080/000164700753749791
  28. Chambers TJ, Fuller K. How are osteoclasts induced to resorb bone? Ann N Y Acad Sci 2011;1240:1-6.  https://doi.org/10.1111/j.1749-6632.2011.06249.x
  29. Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC, Baron R. Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 2001;152:181-95.  https://doi.org/10.1083/jcb.152.1.181
  30. Lakkakorpi PT, Horton MA, Helfrich MH, Karhukorpi EK, Vaananen HK. Vitronectin receptor has a role in bone resorption but does not mediate tight sealing zone attachment of osteoclasts to the bone surface. J Cell Biol 1991;115:1179-86.  https://doi.org/10.1083/jcb.115.4.1179
  31. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ, Dunstan CR, Hu S, Lacey DL. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 1999;145:527-38.  https://doi.org/10.1083/jcb.145.3.527
  32. Novack DV, Faccio R. Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev 2011;10:54-61.  https://doi.org/10.1016/j.arr.2009.09.005
  33. Stenbeck G. Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 2002;13:285-92.  https://doi.org/10.1016/S1084952102000587
  34. Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol 1989;109(4 Pt 1):1817-26.  https://doi.org/10.1083/jcb.109.4.1817
  35. Nesbitt S, Nesbit A, Helfrich M, Horton M. Biochemical characterization of human osteoclast integrins. Osteoclasts express alpha v beta 3, alpha 2 beta 1, and alpha v beta 1 integrins. J Biol Chem 1993;268:16737-45. https://doi.org/10.1016/S0021-9258(19)85479-0