과제정보
We would like to thank the referee for helpful comments and suggestions, which improved the presentation of this paper.
참고문헌
- B. Altay and F. Basar, The fine spectrum and the matrix domain of the difference operator ∆ on the sequence space ℓp, Comm. Math. anal. 2 (2) (2007). https://www.researchgate.net/publication/26489984
- F. Basar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), 136-147. https://doi.org/10.1023/A:1025080820961
- C. A. Bektas and R. Colak, On some generalized difference sequence spaces, Thai. J. Math. 1 (3) (2005), 83-98. https://www.researchgate.net/publication/268859083
- C. A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2) (2004), 423-432. https://doi.org/10.1016/j.jmaa.2003.12.006
- V. K. Bhardwaj and S. Gupta, On β-dual of Banach space valued difference sequence spaces, Ukrainian Math. J. 65 (8) (2013). https://doi.org/10.1007/s11253-014-0857-3
- O. Duyar, On some new vector valued sequence spaces E(X, λ, p), AIMS Mathematics. 8 (6) (2023), 13306-13316. https://doi.org/10.3934/math.2023673
- M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995), 377-386. https://www.researchgate.net/publication/284263561
- M. Et and A. Esi, On Kothe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc. 23 (1) (2000), 25-32. https://www.researchgate.net/publication/247009485
- C. Gnanaseelan and P. D. Srivastva, The α-, β-, γ-duals of some generalized difference sequence spaces, Indian J. Math. 38 (2) (1996), 111-120.
- Haryadi, Supama and A. Zulijanto, Kothe-Toeplitz duals of the Cesaro sequence spaces defined on a generalized Orlicz space, Glob. J. Pure Appl. Math. 14 (4) (2018), 591-601. https://www.ripublication.com/gjpam18/gjpamv14n4_06.pdf
- S. A. Khan, Cesaro difference sequence spaces and its duals, Int. J. Math. Appl. 11 (1) (2023), 41-48. http://ijmaa.in/index.php/ijmaa/article/view/883
- H. Kizmaz, On certain sequence spaces, Canad. Math. bull. 24 (2) (1981) 169-176. https://doi.org/10.4153/CMB-1981-027-5
- P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Deker. Inc., New York and Basel. https://books.google.co.in/books?id=-HoZAQAAIAAJ
- G. G. Lorentz and M. S. Macphail, Unbounded operators and a theorem of A. Robinson, Trans. Royal Soc. Canada. 46 (1952), 33-37.
- I. J. Maddox, Infinite matrices of operators, Lecture notes Math.- Berlin etc. Springer 1980. https://doi.org/10.1007/bfb0088196
- E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. (Engl. Ser.) 23 (3) (2007), 521-532. https://doi.org/10.1007/s10114-005-0719-x
- E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis. 17 (1) (1997), 87-98. https://doi.org/10.1524/anly.1997.17.1.87
- N. Rath, Operator duals of some sequence-spaces, Indian J. Pure Appl. Math. 20 (10) (1989), 953-963.
- A. Robinson, On functional transformations and summability, Proc. London Math. Soc. 1950. https://doi.org/10.1112/plms/s2-52.2.132
- J. K. Srivastava and B. K. Srivastava, Generalized sequence space c0(X, λ, p), Indian J. Pure Appl Math. 27 (1996), 73-84.
- S. Suantai and W. Sanhan, On β-dual of vector-valued sequence spaces of Maddox, Int. J. Math. Math. Sci. 30 (2001), 385-392. https://doi.org/10.1155/s0161171202012772