DOI QR코드

DOI QR Code

GENERALIZED 𝛼-KÖTHE TOEPLITZ DUALS OF CERTAIN DIFFERENCE SEQUENCE SPACES

  • Sandeep Gupta (Department of Mathematics, Arya P.G. College) ;
  • Ritu (Department of Mathematics, Baba Mastnath University) ;
  • Manoj Kumar (Department of Mathematics, Baba Mastnath University)
  • 투고 : 2024.01.27
  • 심사 : 2024.04.16
  • 발행 : 2024.06.30

초록

In this paper, we compute the generalized 𝛼-Köthe Toeplitz duals of the X-valued (Banach space) difference sequence spaces E(X, ∆), E(X, ∆𝜐) and obtain a generalization of the existing results for 𝛼-duals of the classical difference sequence spaces E(∆) and E(∆𝜐) of scalars, E ∈ {ℓ, c, c0}. Apart from this, we compute the generalized 𝛼-Köthe Toeplitz duals for E(X, ∆r) r ≥ 0 integer and observe that the results agree with corresponding results for scalar cases.

키워드

과제정보

We would like to thank the referee for helpful comments and suggestions, which improved the presentation of this paper.

참고문헌

  1. B. Altay and F. Basar, The fine spectrum and the matrix domain of the difference operator ∆ on the sequence space ℓp, Comm. Math. anal. 2 (2) (2007). https://www.researchgate.net/publication/26489984 
  2. F. Basar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), 136-147. https://doi.org/10.1023/A:1025080820961 
  3. C. A. Bektas and R. Colak, On some generalized difference sequence spaces, Thai. J. Math. 1 (3) (2005), 83-98. https://www.researchgate.net/publication/268859083 
  4. C. A. Bektas, M. Et and R. Colak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl. 292 (2) (2004), 423-432. https://doi.org/10.1016/j.jmaa.2003.12.006 
  5. V. K. Bhardwaj and S. Gupta, On β-dual of Banach space valued difference sequence spaces, Ukrainian Math. J. 65 (8) (2013). https://doi.org/10.1007/s11253-014-0857-3 
  6. O. Duyar, On some new vector valued sequence spaces E(X, λ, p), AIMS Mathematics. 8 (6) (2023), 13306-13316. https://doi.org/10.3934/math.2023673 
  7. M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math. 21 (4) (1995), 377-386. https://www.researchgate.net/publication/284263561 
  8. M. Et and A. Esi, On Kothe-Toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc. 23 (1) (2000), 25-32. https://www.researchgate.net/publication/247009485 
  9. C. Gnanaseelan and P. D. Srivastva, The α-, β-, γ-duals of some generalized difference sequence spaces, Indian J. Math. 38 (2) (1996), 111-120. 
  10. Haryadi, Supama and A. Zulijanto, Kothe-Toeplitz duals of the Cesaro sequence spaces defined on a generalized Orlicz space, Glob. J. Pure Appl. Math. 14 (4) (2018), 591-601. https://www.ripublication.com/gjpam18/gjpamv14n4_06.pdf 
  11. S. A. Khan, Cesaro difference sequence spaces and its duals, Int. J. Math. Appl. 11 (1) (2023), 41-48. http://ijmaa.in/index.php/ijmaa/article/view/883 
  12. H. Kizmaz, On certain sequence spaces, Canad. Math. bull. 24 (2) (1981) 169-176. https://doi.org/10.4153/CMB-1981-027-5 
  13. P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Deker. Inc., New York and Basel. https://books.google.co.in/books?id=-HoZAQAAIAAJ 
  14. G. G. Lorentz and M. S. Macphail, Unbounded operators and a theorem of A. Robinson, Trans. Royal Soc. Canada. 46 (1952), 33-37. 
  15. I. J. Maddox, Infinite matrices of operators, Lecture notes Math.- Berlin etc. Springer 1980. https://doi.org/10.1007/bfb0088196 
  16. E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. (Engl. Ser.) 23 (3) (2007), 521-532. https://doi.org/10.1007/s10114-005-0719-x 
  17. E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis. 17 (1) (1997), 87-98. https://doi.org/10.1524/anly.1997.17.1.87 
  18. N. Rath, Operator duals of some sequence-spaces, Indian J. Pure Appl. Math. 20 (10) (1989), 953-963. 
  19. A. Robinson, On functional transformations and summability, Proc. London Math. Soc. 1950. https://doi.org/10.1112/plms/s2-52.2.132 
  20. J. K. Srivastava and B. K. Srivastava, Generalized sequence space c0(X, λ, p), Indian J. Pure Appl Math. 27 (1996), 73-84. 
  21. S. Suantai and W. Sanhan, On β-dual of vector-valued sequence spaces of Maddox, Int. J. Math. Math. Sci. 30 (2001), 385-392. https://doi.org/10.1155/s0161171202012772