DOI QR코드

DOI QR Code

Coffee Husk By-Product as Novel Ingredients for Cascara Kombucha Production

  • Bao Xuyen Nguyen Le (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Thach Phan Van (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Quang Khai Phan (Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University) ;
  • Gia Bao Pham (Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University) ;
  • Hoa Pham Quang (Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University) ;
  • Anh Duy Do (Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University)
  • Received : 2023.10.05
  • Accepted : 2023.11.30
  • Published : 2024.03.28

Abstract

Kombucha, a fermented beverage, is gaining popularity due to its numerous beneficial health effects. Various substrates such as herbs, fruits, flowers, and vegetables, have been used for kombucha fermentation in order to enhance the flavor, aroma, and nutritional composition. This study aims to investigate the potential suitability of cascara as a novel ingredient for kombucha production. Our findings suggested that cascara is a suitable substrate for kombucha production. Fermentation elevated the total phenolic and flavonoid content in cascara, which enhanced the antioxidant, antibacterial, and prebiotic characteristics of the product. Furthermore, the accumulation of acetic acid-induced the pH lowering reached 2.7 after 14 days of fermentation, which achieved the microbiological safety of the product. Moreover, 14 days of fermentation resulted in a balanced amalgamation of acidity, sweetness, and fragrance according to sensory evaluation. Our findings not only highlight the potential of cascara kombucha as a novel substrate for kombucha production but also contribute to repurposing coffee by-products, promoting environmentally friendly and sustainable agricultural development.

Keywords

Acknowledgement

Bao Xuyen Nguyen Le is grateful for financial support from Hyundai Motor Chung Mong-Koo Global Scholarship. The authors are especially grateful to Nguyen Tat Thanh University for providing all the resources needed for this study.

References

  1. Maharani S, Mustikawati I, Nailufhar L, Istiqomah S. 2021. Presented at the Journal of Physics: Conference Series.
  2. Tran DM. 2022. Rhizosphere microbiome dataset of Robusta coffee (Coffea canephora L.) grown in the Central Highlands, Vietnam, based on 16S rRNA metagenomics analysis. Data Brief 42: 108106.
  3. Duque-Acevedo M, Ulloa-Murillo LM, Belmonte-Urena LJ, Camacho-Ferre F, Mercl F, Tlustos P. 2022. Sustainable and circular agro-environmental practices: a review of the management of agricultural waste biomass in Spain and the Czech Republic. Waste Manag. Res. 41: 955-969. https://doi.org/10.1177/0734242X221139122
  4. Klingel T, Kremer JI, Gottstein V, Rajcic de Rezende T, Schwarz S, Lachenmeier DW. 2020. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods 9: 665.
  5. Chakravorty S, Bhattacharya S, Bhattacharya D, Sarkar S, Gachhui R. 2019. Kombucha: a promising functional beverage prepared from tea, pp. 285-327. Non-alcoholic beverages, Ed. Elsevier
  6. Antolak H, Piechota D, Kucharska A. 2021. Kombucha tea-A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 10: 1541.
  7. Vargas BK, Fabricio MF, Ayub MAZ. 2021. Health effects and probiotic and prebiotic potential of Kombucha: a bibliometric and systematic review. Food Biosci. 44: 101332.
  8. Kaewkod T, Bovonsombut S, Tragoolpua Y. 2019. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7: 700.
  9. Dutta H, Paul SK. 2019. Kombucha drink: production, quality, and safety aspects, pp. 259-288. Production and management of beverages, Ed. Elsevier
  10. Jakubczyk K, Kaldunska J, Kochman J, Janda K. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants 9: 447.
  11. De Miranda JF, Ruiz LF, Silva CB, Uekane TM, Silva KA, Gonzalez AGM, et al. 2022. Kombucha: a review of substrates, regulations, composition, and biological properties. J. Food Sci. 87: 503-527. https://doi.org/10.1111/1750-3841.16029
  12. Ayed L, Ben Abid S, Hamdi M. 2017. Development of a beverage from red grape juice fermented with the Kombucha consortium. Annal. Microbiol. 67: 111-121. https://doi.org/10.1007/s13213-016-1242-2
  13. Rocha-Guzman NE, Gonzalez-Laredo RF, Vazquez-Cabral BD, Moreno-Jimenez MR, Gallegos-Infante JA, Gamboa-Gomez CI, et al. 2019. Oak leaves as a new potential source for functional beverages: their antioxidant capacity and monomer flavonoid composition, pp. 381-411. Functional and medicinal beverages, Ed. Elsevier
  14. Heeger A, Kosinska-Cagnazzo A, Cantergiani E, Andlauer W. 2017. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 221: 969-975. https://doi.org/10.1016/j.foodchem.2016.11.067
  15. Nguyen QD, Nguyen NN. 2022. Effects of different hydrocolloids on the production of bacterial cellulose by Acetobacter xylinum using Hestrin-Schramm medium under anaerobic condition. Bioresour. Technol. Rep. 17: 100878.
  16. Lamuela-Raventos RM. 2018. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. pp. 107-115. Measurement of antioxidant activity & capacity: recent trends and applications.
  17. Pekal A, Pyrzynska K. 2014. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 7: 1776-1782. https://doi.org/10.1007/s12161-014-9814-x
  18. Nenadis N, Tsimidou MZ. 2018. DPPH (2, 2-di (4-tert-octylphenyl)-1-picrylhydrazyl) radical scavenging mixed-mode colorimetric assay (s). pp. 141-164. Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications.
  19. Cano A, Arnao MB. 2018. ABTS/TEAC (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-Equivalent Antioxidant Capacity) radical scavenging mixed-mode assay. pp. 117-139.Measurement of antioxidant activity & capacity: recent trends and applications.
  20. Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  21. Slizewska K, Chlebicz-Wojcik A. 2020. The in vitro analysis of prebiotics to be used as a component of a synbiotic preparation. Nutrients 12: 1272.
  22. Drake M, Watson M, Liu Y. 2023. Sensory analysis and consumer preference: best practices. Ann. Rev. Food Sci. Technol. 14: 427-448. https://doi.org/10.1146/annurev-food-060721-023619
  23. Battikh H, Bakhrouf A, Ammar E. 2012. Antimicrobial effect of Kombucha analogues. LWT-Food Sci. Technol. 47: 71-77. https://doi.org/10.1016/j.lwt.2011.12.033
  24. Permatasari HK, Nurkolis F, Augusta PS, Mayulu N, Kuswari M, Taslim NA, et al. 2021. Kombucha tea from seagrapes (Caulerpa racemosa) potential as a functional anti-ageing food: in vitro and in vivo study. Heliyon 7: e07944.
  25. Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard J-P, et al. 2020. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 333: 108778.
  26. Mizzi L, Maniscalco D, Gaspari S, Chatzitzika C, Gatt R, Valdramidis V. 2020. Assessing the individual microbial inhibitory capacity of different sugars against pathogens commonly found in food systems. Lett. Appl. Microbiol. 71: 251-258. https://doi.org/10.1111/lam.13306
  27. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard J-P, Renard T, Rollan S, et al. 2019. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 83: 44-54. https://doi.org/10.1016/j.procbio.2019.05.004
  28. Coban HB. 2020. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst. Eng. 43: 569-591. https://doi.org/10.1007/s00449-019-02256-w
  29. Nummer BA. 2013. Special report: kombucha brewing under the food and drug administration model food code: risk analysis and processing guidance. J. Environ. Health 76: 8-11.
  30. Malbasa RV, Loncar ES, Vitas JS, Canadanovic-Brunet JM. 2011. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 127: 1727-1731. https://doi.org/10.1016/j.foodchem.2011.02.048
  31. Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. 2016. Kombucha tea fermentation: microbial and biochemical dynamics. Int. J. Food Microbiol. 220: 63-72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  32. Costa MAdC, Dias Moreira LdP, Duarte VdS, Cardoso RR, Sao Jose VPBd, Silva BPd, et al. 2022. Kombuchas from green and black tea modulate the gut microbiota and improve the intestinal health of wistar rats fed a high-fat high-fructose diet. Nutrients 14: 5234.