DOI QR코드

DOI QR Code

(E)-2-Methoxy-4-(3-(4-Methoxyphenyl) Prop-1-en-1-yl) Phenol Suppresses Breast Cancer Progression by Dual-Regulating VEGFR2 and PPARγ

  • Na-Yeon Kim (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Hyo-Min Park (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Hee Pom Lee (College of Pharmacy & Medical Research Center, Chungbuk National University) ;
  • Jin Tae Hong (College of Pharmacy & Medical Research Center, Chungbuk National University) ;
  • Do-Young Yoon (Department of Bioscience and Biotechnology, Konkuk University)
  • 투고 : 2023.09.14
  • 심사 : 2023.10.26
  • 발행 : 2024.02.28

초록

In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.

키워드

참고문헌

  1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. 2022. Breast cancer statistics. CA Cancer J. Clin. 72: 524-541. https://doi.org/10.3322/caac.21754
  2. Waks AG, Winer EP. 2019. Breast cancer treatment: a review. JAMA 321: 288-300. https://doi.org/10.1001/jama.2018.19323
  3. Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad S. 2018. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur. J. Med. Chem. 143: 1277-1300. https://doi.org/10.1016/j.ejmech.2017.10.021
  4. Andreopoulou E, Schweber SJ, Sparano JA, McDaid HM. 2015. Therapies for triple negative breast cancer. Exp. Opin .Pharmacother. 16: 983-998. https://doi.org/10.1517/14656566.2015.1032246
  5. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270: 12953-12956. https://doi.org/10.1074/jbc.270.22.12953
  6. Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, et al. 2020. The role of PPARgamma ligands in breast cancer: From basic research to clinical studies. Cancers (Basel) 12: 2623.
  7. Kim KY, Ahn JH, Cheon HG. 2011. Anti-angiogenic action of PPARgamma ligand in human umbilical vein endothelial cells is mediated by PTEN upregulation and VEGFR-2 downregulation. Mol. Cell. Biochem. 358: 375-385. https://doi.org/10.1007/s11010-011-0989-9
  8. Bhanushali U, Rajendran S, Sarma K, Kulkarni P, Chatti K, Chatterjee S, et al. 2016. 5-Benzylidene-2,4-thiazolidenedione derivatives: design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg. Chem. 67: 139-147. https://doi.org/10.1016/j.bioorg.2016.06.006
  9. Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR. 2010. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim. Biophys. Acta 1806: 108-121. https://doi.org/10.1016/j.bbcan.2010.04.004
  10. Son DJ, Zheng J, Jung YY, Hwang CJ, Lee HP, Woo JR, et al. 2017. MMPP attenuates non-small cell lung cancer growth by inhibiting the STAT3 DNA-binding activity via direct binding to the STAT3 DNA-binding domain. Theranostics 7: 4632-4642. https://doi.org/10.7150/thno.18630
  11. Kim NY, Lim CM, Park HM, Kim J, Pham TH, Yang Y, et al. 2022. MMPP promotes adipogenesis and glucose uptake via binding to the PPARgamma ligand binding domain in 3T3-L1 MBX cells. Front. Pharmacol. 13: 994584.
  12. Kim NY, Park HM, Park JY, Kim U, Shin H, Lee H, et al. 2023. MMPP is a novel VEGFR2 inhibitor that suppresses angiogenesis via VEGFR2/AKT/ERK/NF-κB pathway. BMB Rep. 14: 6027.
  13. Kim S, Kim NY, Park JY, Park HM, Lim CM, Kim J, et al. 2023. MMPP exerts anti-inflammatory effects by suppressing MD2-dependent NF-kappaB and JNK/AP-1 pathways in THP-1 monocytes. Pharmaceuticals (Basel) 16: 480.
  14. El-Adl K, El-Helby AA, Sakr H, Eissa IH, El-Hddad SSA, F MIAS. 2020. Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem. 102: 104059.
  15. Son DJ, Kim DH, Nah SS, Park MH, Lee HP, Han SB, et al. 2016. Novel synthetic (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol inhibits arthritis by targeting signal transducer and activator of transcription 3. Sci. Rep. 6: 36852.
  16. Holliday DL, Speirs V. 2011. Choosing the right cell line for breast cancer research. Breast Cancer Res. 13: 215.
  17. Kim NY, Kim S, Park HM, Lim CM, Kim J, Park JY, et al. 2023. Cinnamomum verum extract inhibits NOX2/ROS and PKCdelta/JNK/AP-1/NF-kappaB pathway-mediated inflammatory response in PMA-stimulated THP-1 monocytes. Phytomedicine 112: 154685.
  18. Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, et al. 2021. Double-edged swords: diaryl pyrazoline thiazolidinediones synchronously targeting cancer epigenetics and angiogenesis. Bioorg. Chem. 116: 105350.
  19. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
  20. Lin PH, Lan WM, Chau LY. 2013. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene. 32: 2325-2334. https://doi.org/10.1038/onc.2012.244
  21. Klein CA. 2020. Cancer progression and the invisible phase of metastatic colonization. Nat. Rev. Cancer 20: 681-694. https://doi.org/10.1038/s41568-020-00300-6
  22. Tao L, Zhu F, Xu F, Chen Z, Jiang YY, Chen YZ. 2015. Co-targeting cancer drug escape pathways confers clinical advantage for multitarget anticancer drugs. Pharmacol. Res. 102: 123-131. https://doi.org/10.1016/j.phrs.2015.09.019
  23. Foulkes WD, Smith IE, Reis-Filho JS. 2010. Triple-negative breast cancer. N. Engl. J. Med. 363: 1938-1948. https://doi.org/10.1056/NEJMra1001389
  24. Fragomeni SM, Sciallis A, Jeruss JS. 2018. Molecular subtypes and local-regional control of breast cancer. Surg. Oncol. Clin. N. Am. 27: 95-120. https://doi.org/10.1016/j.soc.2017.08.005
  25. Moo TA, Sanford R, Dang C, Morrow M. 2018. Overview of breast cancer therapy. Pet Clin. 13: 339-354. https://doi.org/10.1016/j.cpet.2018.02.006
  26. Ni H, Guo M, Zhang X, Jiang L, Tan S, Yuan J, et al. 2021. VEGFR2 inhibition hampers breast cancer cell proliferation via enhanced mitochondrial biogenesis. Cancer Biol. Med. 18: 139-154. https://doi.org/10.20892/j.issn.2095-3941.2020.0151
  27. Yan JD, Liu Y, Zhang ZY, Liu GY, Xu JH, Liu LY, et al. 2015. Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol. Res. Pract. 211: 539-543. https://doi.org/10.1016/j.prp.2015.04.003
  28. Mohan N, Luo X, Shen Y, Olson Z, Agrawal A, Endo Y, et al. 2021. A novel bispecific antibody targeting EGFR and VEGFR2 is effective against triple negative breast cancer via multiple mechanisms of action. Cancers (Basel) 13: 1027.
  29. Abhinand CS, Raju R, Soumya SJ, Arya PS, Sudhakaran PR. 2016. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 10: 347-354. https://doi.org/10.1007/s12079-016-0352-8
  30. Spiegelman BM. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514. https://doi.org/10.2337/diabetes.47.4.507
  31. Tontonoz P, Graves RA, Budavari AI, Erdjument-Bromage H, Lui M, Hu E, et al. 1994. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 22: 5628-5634. https://doi.org/10.1093/nar/22.25.5628
  32. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. 2008. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8: 187-198. https://doi.org/10.2174/156800908784293659
  33. Tang Z, Zhao P, Zhang W, Zhang Q, Zhao M, Tan H. 2022. SALL4 activates PI3K/AKT signaling pathway through targeting PTEN, thus facilitating migration, invasion and proliferation of hepatocellular carcinoma cells. Aging (Albany NY) 14: 10081-10092.
  34. Peng C, Chen H, Li Y, Yang H, Qin P, Ma B, et al. 2021. LRIG3 Suppresses angiogenesis by regulating the PI3K/AKT/VEGFA signaling pathway in glioma. Front. Oncol. 11: 621154.
  35. Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y. 2019. Salvianolic acid A attenuates CCl(4)-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des. Devel. Ther. 13: 1889-1900. https://doi.org/10.2147/DDDT.S194787
  36. Martinou JC, Youle RJ. 2011. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21: 92-101. https://doi.org/10.1016/j.devcel.2011.06.017
  37. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282: 1318-1321. https://doi.org/10.1126/science.282.5392.1318
  38. Slee EA, Adrain C, Martin SJ. 2001. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276: 7320-7326. https://doi.org/10.1074/jbc.M008363200
  39. Huang Y, Liu S, Shan M, Hagenaars SC, Mesker WE, Cohen D, et al. 2022. RNF12 is regulated by AKT phosphorylation and promotes TGF-beta driven breast cancer metastasis. Cell Death Dis. 13: 44.
  40. Park M, Kim D, Ko S, Kim A, Mo K, Yoon H. 2022. Breast cancer metastasis: mechanisms and therapeutic implications. Int. J. Mol. Sci. 23: 6806.