DOI QR코드

DOI QR Code

DEHP (di(2-ethylhexyl)phthalate) stimulates skin pigmentation by perturbing cytoskeletal homeostasis

  • Received : 2024.01.17
  • Accepted : 2024.04.22
  • Published : 2024.07.15

Abstract

Phthalates are extensively employed plasticizers crucial for conferring flexibility and plasticity to polyvinyl chloride. Phthalates, including DEHP (di(2-ethylhexyl)phthalate), present in diverse products, have been identified in fine dust and are capable of infiltrating the body, potentially posing health hazards. Importantly, melanocytes, existing at the basal layer of the epidermis, are susceptible to toxic substances. In our study, we employed the 3D human pigmented epidermis model, MelanoDermTM, along with the B16F10 murine melanoma cell line, to examine the influence of DEHP exposure on melanocytes. The exposure to low concentrations of DEHP (~5 µM), resulted in the extension of melanocyte dendrites, indicating the stimulation of melanocytes. Analysis of gene expression and protein profiles unveiled the up-regulation of MITF, Arpc2, and TRP1 genes subsequent to DEHP exposure, indicating alterations in cytoskeletal and melanosome-related genetic and protein components in melanocytes. Notably, increased pigmentation was observed in MelanoDermTM following DEHP exposure. DEHP-stimulated reactive oxygen species generation appeared to be involved in these events since the antioxidant, ascorbic acid attenuated ROS generation and MITF upregulation. Collectively, our study demonstrated that DEHP exposure can induce cytoskeletal disturbance and skin pigmentation through oxidative stress.

Keywords

Acknowledgement

The National Research Foundation of Korea provided funding for this research. (RS-2023-00247577 and 2021R1A2C2013347).

References

  1. Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, Rizzo J, Nudelman JL, Brody JG (2011) Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect 119:914-920. https://doi.org/10.1289/ehp.1003170 
  2. Kelley KE, Hernandez-Diaz S, Chaplin EL, Hauser R, Mitchell AA (2012) Identification of phthalates in medications and dietary supplement formulations in the United States and Canada. Environ Health Perspect 120:379-384. https://doi.org/10.1289/ehp.1103998 
  3. Subedi B, Sullivan KD, Dhungana B (2017) Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Environ Pollut 230:701-708. https://doi.org/10.1016/j.envpol.2017.07.028 
  4. Amini H, Dehlendorff C, Lim YH, Mehta A, Jorgensen JT, Mortensen LH, Westendorp R, Hofmann B, Loft S, Cole-Hunter T, Brauner EV, Ketzel M, Hertel O, Brandt J, Solvang Jensen S, Christensen JH, Geels C, Frohn LM, Backalarz C, Simonsen MK, Andersen ZJ (2020) Long-term exposure to air pollution and stroke incidence: a Danish Nurse cohort study. Environ Int 142:105891. https://doi.org/10.1016/j.envint.2020.105891 
  5. Jia B, Gao M, Zhang X, Xiao X, Zhang S, Lam Yung KK (2021) Rapid increase in mortality attributable to PM(2.5) exposure in India over 1998-2015. Chemosphere 269:128715. https://doi.org/10.1016/j.chemosphere.2020.128715 
  6. Chen Y, Lv D, Li XH, Zhu TL (2018) PM2.5-bound phthalates in indoor and outdoor air in Beijing: seasonal distributions and human exposure via inhalation. Environ Pollut 241:369-377. https://doi.org/10.1016/j.envpol.2018.05.081 
  7. Christia C, Poma G, Harrad S, de Wit CA, Sjostrom Y, Leonards P, Lamoree M, Covaci A (2019) Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption. Environ Res 171:204-212. https://doi.org/10.1016/j.envres.2018.11.034 
  8. Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47:293-306. https://doi.org/10.3349/ymj.2006.47.3.293 
  9. Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, Zhen AX, Jeong JW, Choi YH, Kang HK, Koh YS, Hyun JW (2018) Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 92:2077-2091. https://doi.org/10.1007/s00204-018-2197-9 
  10. Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Alqinyah M, Attia SM, Sarawi W, Alanazi AZ, Alhazzani K, Ibrahim KE (2023) Worsening of imiquimod-induced psoriasiform inflammation in mice by environmental pollutant, di-(2-ethylhexyl) phthalate through dysregulation in IL-17A and Nrf2/iNOS signaling in peripheral myeloid and CD4 + T cells. Int Immunopharmacol 126:111293. https://doi.org/10.1016/j.intimp.2023.111293 
  11. Kim M, Lim KM (2022) Melanocytotoxic chemicals and their toxic mechanisms. Toxicol Res 38:417-435. https://doi.org/10.1007/s43188-022-00144-2 
  12. Van Gele M, Geusens B, Schmitt AM, Aguilar L, Lambert J (2008) Knockdown of myosin Va isoforms by RNAi as a tool to block melanosome transport in primary human melanocytes. J Invest Dermatol 128:2474-2484. https://doi.org/10.1038/jid.2008.100 
  13. Na JI, Shin JW, Choi HR, Kwon SH, Park KC (2019) Resveratrol as a multifunctional topical hypopigmenting agent. Int J Mol Sci 20:956. https://doi.org/10.3390/ijms20040956 
  14. Santi MD, Peralta MA, Puiatti M, Cabrera JL, Ortega MG (2019) Melanogenic inhibitory effects of Triangularin in B16F0 melanoma cells, in vitro and molecular docking studies. Bioorg Med Chem 27:3722-3728. https://doi.org/10.1016/j.bmc.2019.06.041 
  15. Choi ME, Yoo H, Lee HR, Moon IJ, Lee WJ, Song Y, Chang SE (2020) Carvedilol, an adrenergic blocker, suppresses melanin synthesis by inhibiting the cAMP/CREB signaling pathway in human melanocytes and ex vivo human skin culture. Int J Mol Sci 21:8796. https://doi.org/10.3390/ijms21228796 
  16. Vlahovic-Palcevski V, Milic S, Hauser G, Protic A, Zupan Z, Reljic M, Stimac D (2010) Toxic epidermal necrolysis associated with carvedilol treatment. Int J Clin Pharmacol Ther 48:549-551. https://doi.org/10.5414/cpp48549 
  17. Hlisnikova H, Petrovicova I, Kolena B, Sidlovska M, Sirotkin A (2020) Effects and mechanisms of phthalates' action on reproductive processes and reproductive health: a literature review. Int J Environ Res Public Health 17:6811. https://doi.org/10.3390/ijerph17186811 
  18. Lee GH, Jin SW, Kim SJ, Pham TH, Choi JH, Jeong HG (2019) Tetrabromobisphenol A induces MMP-9 expression via NADPH oxidase and the activation of ROS, MAPK, and Akt pathways in human breast cancer MCF-7 cells. Toxicol Res 35:93-101. https://doi.org/10.5487/Tr.2019.35.1.093 
  19. Seiberg M (2001) Keratinocyte-melanocyte interactions during melanosome transfer. Pigm Cell Res 14:236-242. https://doi.org/10.1034/j.1600-0749.2001.140402.x 
  20. Zurina IM, Gorkun AA, Dzhussoeva EV, Kolokoltsova TD, Markov DD, Kosheleva NV, Morozov SG, Saburina IN (2020) Human melanocyte-derived spheroids: a precise test system for drug screening and a multicellular unit for tissue engineering. Front Bioeng Biotechnol 8:540. https://doi.org/10.3389/fbioe.2020.00540 
  21. Masaki H (2010) Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 58:85-90. https://doi.org/10.1016/j.jdermsci.2010.03.003 
  22. Williams RC, Shah C, Sackett D (1999) Separation of tubulin isoforms by isoelectric focusing in immobilized pH gradient gels. Anal Biochem 275:265-267. https://doi.org/10.1006/abio.1999.4326 
  23. Goley ED, Rammohan A, Znameroski EA, Firat-Karalar EN, Sept D, Welch MD (2010) An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. Proc Natl Acad Sci USA 107:8159-8164. https://doi.org/10.1073/pnas.0911668107 
  24. Zheng SH, Qin FF, Yin J, Li DY, Huang YL, Hu LX, He L, Lv CF, Li XH, Li S, Hu WJ (2023) Role and mechanism of actin-related protein 2/3 complex signaling in cancer invasion and metastasis: a review. Medicine 102:e33158. https://doi.org/10.1097/MD.0000000000033158 
  25. Lasser M, Tiber J, Lowery LA (2018) The role of the microtubule cytoskeleton in neurodevelopmental disorders. Front Cell Neurosci 12:165. https://doi.org/10.3389/fncel.2018.00165 
  26. Ngo L, Haas M, Qu ZD, Li SS, Zenker J, Teng KSL, Gunnersen JM, Breuss M, Habgood M, Keays DA, Heng JIT (2014) TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. Hum Mol Genet 23:5147-5158. https://doi.org/10.1093/hmg/ddu238 
  27. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, Testori A, Larue L, Goding CR (2006) Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Gene Dev 20:3426-3439. https://doi.org/10.1101/gad.406406 
  28. Kawasaki A, Kumasaka M, Satoh A, Suzuki M, Tamura K, Goto T, Asashima M, Yamamoto H (2008) Mitf contributes to melanosome distribution and melanophore dendricity. Pigm Cell Melanoma Res 21:269-270. https://doi.org/10.1111/j.1755-148X.2007.00420.x 
  29. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S (1997) Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem 272:503-509. https://doi.org/10.1074/jbc.272.1.503 
  30. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406-414. https://doi.org/10.1016/j.molmed.2006.07.008 
  31. Grabacka M, Placha W, Urbanska K, Laidler P, Plonka PM, Reiss K (2008) PPAR gamma regulates MITF and beta-catenin expression and promotes a differentiated phenotype in mouse melanoma S91. Pigm Cell Melanoma Res 21:388-396. https://doi.org/10.1111/j.1755-148X.2008.00460.x 
  32. Gajos-Michniewicz A, Czyz M (2020) WNT signaling in melanoma. Int J Mol Sci 21:4852. https://doi.org/10.3390/ijms21144852 
  33. Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C (2011) In melanoma, beta-catenin is a suppressor of invasion. Oncogene 30:4531-4543. https://doi.org/10.1038/onc.2011.162 
  34. Kaiser L, Quint I, Csuk R, Jung M, Deigner H (2020) Active fatty acid oxidation defines the cellular response towards reactive oxygen species. https://doi.org/10.1101/2020.07.13.200022 
  35. Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang LL, Yang F, Iddamalgoda A, Katayama I, Inoue S (2020) GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 10:4930. https://doi.org/10.1038/s41598-020-61931-1 
  36. Gutknecht M, Geiger J, Joas S, Dorfel D, Salih HR, Muller MR, Grunebach F, Rittig SM (2015) The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun Signal 13:19. https://doi.org/10.1186/s12964-015-0099-5 
  37. Pillaiyar T, Manickam M, Namasivayam V (2017) Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 32:403-425. https://doi.org/10.1080/14756366.2016.1256882 
  38. Delevoye C (2014) Melanin transfer: the keratinocytes are more than gluttons. J Investig Dermatol 134:877-879. https://doi.org/10.1038/jid.2013.487 
  39. Kang MC, Lee JW, Lee TH, Subedi L, Wahedi HM, Do SG, Shin E, Moon EY, Kim SY (2020) UP256 inhibits hyperpigmentation by tyrosinase expression/dendrite formation via Rho-dependent signaling and by primary cilium formation in melanocytes. Int J Mol Sci 21:5341. https://doi.org/10.3390/ijms21155341 
  40. Cho YJ, Park SB, Han M (2015) Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol 407:9-17. https://doi.org/10.1016/j.mce.2015.03.003 
  41. Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:120. https://doi.org/10.3390/ijms18010120 
  42. Koga S, Nakano M, Tero-Kubota S (1992) Generation of superoxide during the enzymatic action of tyrosinase. Arch Biochem Biophys 292:570-575. https://doi.org/10.1016/0003-9861(92)90032-r 
  43. Nappi AJ, Vass E (1996) Hydrogen peroxide generation associated with the oxidations of the eumelanin precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid. Melanoma Res 6:341-349. https://doi.org/10.1097/00008390-199610000-00001 
  44. Lu YY, Tonissen KF, Di Trapani G (2021) Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Biosci Rep 41:BSR20210427. https://doi.org/10.1042/Bsr20210427 
  45. Zhu WY, Gao J (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 13:20-24. https://doi.org/10.1038/jidsymp.2008.8