Acknowledgement
This study was supported by the Korea Institute of Oriental Medicine (KIOM, Grant No. KSN1515293), and the National Research Foundation of Korea (NRF) grant (NRF-2020R1A2C2012917), funded by the Ministry of Science and ICT (MSIT), Republic of Korea.
References
- Sen T, Samanta SK (2015) Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol 147:59-110. https://doi.org/10.1007/10_2014_273
- Akkol EK, Cankaya IT, Karatoprak GS et al (2021) Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front Pharmacol 12:669638. https://doi.org/10.3389/fphar.2021.669638
- Lim MK, Kim JY, Jeong J et al (2021) Evaluation of subchronic Toxicity and genotoxicity of ethanolic extract of Aster glehni leaves and stems. Evid Based Complement Alternat Med 2021:1018101. https://doi.org/10.1155/2021/1018101
- Roberts SM, James RC, Williams PL (2015) Principles of toxicology: environmental and industrial applications. Wiley, Hoboken
- Posadzki P, Watson LK, Ernst E (2013) Adverse effects of herbal medicines: an overview of systematic reviews. Clin Med 13:7-12. https://doi.org/10.7861/clinmedicine.13-1-7
- Zhou J, Ouedraogo M, Qu F, Duez P (2013) Potential genotoxicity of traditional Chinese medicinal plants and phytochemicals: an overview. Phytother Res 27:1745-1755. https://doi.org/10.1002/ptr.4942
- Morton JF, Dowling CF (1987) Fruits of warm climates. Distributed by Creative Resources System, Miami
- Kazman BSMA, Harnett JE, Hanrahan JR (2020) The phytochemical constituents and pharmacological activities of Annona atemoya: a systematic review. Pharmaceuticals (Basel) 13:269. https://doi.org/10.3390/ph13100269
- Tiangda CH, Gritsanapan W, Sookvanichsilp N, Limchalearn A (2000) Anti-headlice activity of a preparation of Annona squamosa seed extract. Southeast Asian J Trop Med Public Health 31(Suppl 1):174-177
- Yi J-M, Park J-S, Lee J et al (2014) Anti-angiogenic potential of an ethanol extract of Annona atemoya seeds in vitro and in vivo. BMC Complement Altern Med 14:353. https://doi.org/10.1186/1472-6882-14-353
- Nugraha AS, Damayanti YD, Wangchuk P, Keller PA (2019) Anti-infective and anti-cancer properties of the Annona species: their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules 24:4419. https://doi.org/10.3390/molecules24234419
- Mannino G, Gentile C, Porcu A et al (2020) Chemical profle and biological activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) leaves. Molecules 25:2612. https://doi.org/10.3390/molecules25112612
- Rabelo SV, Costa M, Liborio RC (2014) Almeida JRGdS: antioxidant and antimicrobial activity of extracts from atemoia (Annona cherimola Mill. × A. squamosa L.). Rev Bras Frutic 36:265-271. https://doi.org/10.3390/ph13100269
- Do Hallison NS, Suzana VR, Tamara CD et al (2017) Antinociceptive and anti-inflammatory activities of ethanolic extract from atemoya (Annona cherimola Mill × Annona squamosa L.). Afr J Pharm Pharmacol 11:224-232. https://doi.org/10.5897/ajpp2017.4778
- Sohn E, Lim H-S, Kim YJ et al (2019) Annona atemoya leaf extract improves scopolamine-induced memory impairment by preventing hippocampal cholinergic dysfunction and neuronal cell death. Int J Mol Sci 20:3538. https://doi.org/10.3390/ijms20143538
- Lim H-S, Kim YJ, Sohn E et al (2019) Annona atemoyaleaf extract ameliorates cognitive impairment in amyloid-β injected Alzheimer's disease-like mouse model. Exp Biol Med (Maywood) 244:1665-1679. https://doi.org/10.1177/1535370219886269
- Fu B, Wang N, Tan H-Y et al (2018) Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol 9:1394. https://doi.org/10.3389/fphar.2018.01394
- Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891-3914. https://doi.org/10.1016/j.biomaterials.2009.04.009
- Registre M, Proudlock R (2016) The in vitro chromosome aberration test. In: Genetic toxicology testing. Academic Press, Cambridge, pp 207-267
- Honma M (1999) Evaluation of the mouse lymphoma TK assay (microwell method) as an alternative to the in vitro chromosomal aberration test. Mutagenesis 14:5-22. https://doi.org/10.1093/mutage/14.1.5
- OECD (2019) OECD principles of good laboratory practice. Series on principles of good laboratory practice (GLP) and compliance monitoring, No 20. OECDiLibrary, Paris. https://doi.org/10.1787/2077785x
- OECD (2016) Test no. 474: mammalian erythrocyte micronucleus test. OECDiLibrary, Paris. https://doi.org/10.1787/97892642647621_en
- Schmid W (1975) The micronucleus test. Mutat Res Environ Mutag Related Subj 31:9-15. https://doi.org/10.1016/0165-1161(75)90058-8
- OECD (2020) Test no. 471: bacterial reverse mutation test. OECDiLibrary, Paris. https://doi.org/10.1787/9789264071247_en
- Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21. https://doi.org/10.1093/bioinformatics/bts635
- Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80
- De Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453-1454. https://doi.org/10.1093/bioinformatics/bth078
- Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:3. https://doi.org/10.1186/gb-2003-4-9-r60
- Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093. https://doi.org/10.1093/bioinformatics/btp101
- Korean Ministry of Food and Drug Safety Web (2019) Guidelines for nonclinical testing of herbal product. http://www.nifds.go.kr/brd/0290-02. Accessed 2 Apr 2019
- Clare G (2012) The in vitro mammalian chromosome aberration test. Methods Mol Biol 817:69-91. https://doi.org/10.1007/978-1-61779-421-6_5
- Lee S-B, Lee J-S, Wang J-H et al (2021) Genotoxicity of water extract from bark-removed Rhus verniciflua Stokes. Molecules 26:896. https://doi.org/10.3390/molecules26040896
- Kim NS, Shin S, Shin G-G, Bang O-S (2019) Genotoxicity evaluation of a Phragmitis rhizoma extract using a standard battery of in vitro and in vivo assays. J Ethnopharmacol 241:112025. https://doi.org/10.1016/j.jep.2019.112025
- Lee MY, Park Y-C, Jin M et al (2018) Genotoxicity evaluation of So-ochim-tang-gamibang (SOCG), a herbal medicine. BMC Complement Altern Med 18:47. https://doi.org/10.1186/s12906-018-2111-2
- Lovell DP, Fellows M, Marchetti F et al (2018) Analysis of negative historical control group data from the in vitro micronucleus assay using TK6 cells. Mutat Res Genet Toxicol Environ Mutagen 825:40-50. https://doi.org/10.1016/j.mrgentox.2017.10.006
- Lewis DFV, Ioannides C, Parke DV (1993) Validation of a novel molecular orbital approach (COMPACT) for the prospective safety evaluation of chemicals, by comparison with rodent carcinogenicity and Salmonella mutagenicity data evaluated by the U.S. NCI/NTP Mutat Res-Environ Mutag Related Subj 291:61-77. https://doi.org/10.1016/0165-1161(93)90018-u
- Hong C-E, Lyu S-Y (2013) Evaluation of the mutagenic properties of two lignans from Acanthopanax koreanum Nakai. Toxicol Res 29:279-283. https://doi.org/10.5487/tr.2013.29.4.279
- Oliveira NdMS, Resende MR, Morales DA, De Ragao UG, Boriollo MFG (2016) In vitro mutagenicity assay (Ames test) and phytochemical characterization of seeds oil of Helianthus annuus Linne (sunflower). Toxicol Rep 3:733-739. https://doi.org/10.1016/j.toxrep.2016.09.006
- Platel A, Gervais V, Sajot N et al (2010) Study of gene expression profiles in TK6 human cells exposed to DNA-oxidizing agents. Mutat Res 689:21-49. https://doi.org/10.1016/j.mrfmmm.2010.04.004
- Kuehner S, Holzmann K, Speit G (2013) Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 87:1999-2012. https://doi.org/10.1007/s00204-013-1060-2
- Suh SK, Kim TG, Kim HJ et al (2007) Gene expression in profiling of genotoxicity induced by MNNG in TK6 cells. Mol Cell Toxicol 3:98-106. https://doi.org/10.1016/j.mrfmmm.2010.04.004
- Li HH, Hyduke DR, Chen R et al (2015) Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells. Environ Mol Mutagen 56:505-519. https://doi.org/10.1002/em.21941
- Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. Mol Toxicol 99:87-110. https://doi.org/10.1007/978-3-7643-8336-7_4
- Wang Y, Su M, Chen Y et al (2023) Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 14:1234280. https://doi.org/10.3389/fendo.2023.1234280
- Chen ACH, Peng Q, Fong SW et al (2021) DNA damage response and cell cycle regulation in pluripotent stem cells. Genes (Basel) 12:1548. https://doi.org/10.3390/genes12101548
- Lombardo G, Melzi G, Indino S et al (2022) Keratin 17 as a marker of UVB-induced stress in human epidermis and modulation by vitis vinifera extract. Cells Tissues Organs 211:611-627. https://doi.org/10.1159/000520038
- Dos Santos CP, Londero JEL, Dos Santos MB et al (2018) Sunlight-induced genotoxicity and damage in keratin structures decrease tadpole performance. J Photochem Photobiol B 181:134-142. https://doi.org/10.1016/j.jphotobiol.2018.03.013
- Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M (2021) Genomic instability and cancer risk associated with erroneous DNA repair. Int J Mol Sci 22:12254. https://doi.org/10.3390/ijms222212254
- Wu HL, Gong Y, Ji P, Xie YF et al (2022) Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. J Hematol Oncol 15:45. https://doi.org/10.1186/s13045-022-01263-x
- Jia F, Chi C, Han M (2020) Regulation of nucleotide metabolism and germline proliferation in response to nucleotide imbalance and genotoxic stresses by EndoU nuclease. Cell Rep 30:1848- 1861.e5. https://doi.org/10.1016/j.celrep.2020.01.050
- Park H, Lee JY, Lim W, Song G (2021) Assessment of the in vivo genotoxicity of pendimethalin via mitochondrial bioenergetics and transcriptional profiles during embryogenesis in zebrafish: implication of electron transport chain activity and developmental defects. J Hazard Mater 411:125153. https://doi.org/10.1016/j.jhazmat.2021.125153
- Gunaydin-Akyildiz A, Aksoy N, Boran T et al (2022) Favipiravir induces oxidative stress and genotoxicity in cardiac and skin cells. Toxicol Lett 371:9-16. https://doi.org/10.1016/j.toxlet.2022.09.011
- Ananthi R, Chandra N, Santhiya ST, Ramesh A (2010) Genotoxic and antigenotoxic effects of Hemidesmus indicus R. Br. root extract in cultured lymphocytes. J Ethnopharmacol 127:558-560. https://doi.org/10.1016/j.jep.2009.10.034
- Fateh AH, Mohamed Z, Chik Z et al (2019) Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley rats. J Ethnopharmacol 235:88-99. https://doi.org/10.1016/j.jep.2019.02.007
- Gollapudi BB, Krishna G (2000) Practical aspects of mutagenicity testing strategy: an industrial perspective. Mutat Res 455:21-28. https://doi.org/10.1016/s0027-5107(00)00114-7
- Walmsley RM, Billinton N (2011) How accurate is in vitro prediction of carcinogenicity? Genotoxicity testing. Br J Pharmacol 162:1250-1258. https://doi.org/10.1111/j.1476-5381.2010.01131.x
- Verschaeve L (2015) Genotoxicity and antigenotoxicity studies of traditional medicinal plants: How informative and accurate are the results? Nat Prod Commun 10:1934578X1501000. https://doi.org/10.1177/1934578x1501000843
- Eren Y, Ozata A (2014) Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests. Rev Bras Farmacogn 24:51-59. https://doi.org/10.1590/0102-695x20142413322
- da Silva Dantas FG, de Castilho PF, de Almeida-Apolonio AA et al (2020) Mutagenic potential of medicinal plants evaluated by the Ames Salmonella/microsome assay: a systematic review. Mutat Res Rev Mutat Res 786:108338. https://doi.org/10.1016/j.mrrev.2020.108338
- Fei C, Zhang J, Lin Y et al (2015) Safety evaluation of a triazine compound nitromezuril by assessing bacterial reverse mutation, sperm abnormalities, micronucleus and chromosomal aberration. Regul Toxicol Pharmacol 71:585-589. https://doi.org/10.1016/j.yrtph.2015.01.011
- Kirkland D, Reeve L, Gatehouse D, Vanparys P (2011) A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res Genet Toxicol Environ Mutagen 721:27-73. https://doi.org/10.1016/j.mrgentox.2010.12.015
- Langie SAS, Azqueta A, Collins AR (2015) The comet assay: past, present, and future. Front Genet 6:266. https://doi.org/10.3389/fgene.2015.00266
- Wu M-F, Peng F-C, Chen Y-L et al (2011) Evaluation of genotoxicity of Antrodia cinnamomea in the Ames test and the in vitro chromosomal aberration test. In Vivo 25:419-423