Acknowledgement
We are grateful to Ms. Lili Ren for her assistance in language editing.
References
- Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Hansen M, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, vom Saal FS, Welshons WV, Benbrook CM (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19. https://doi.org/10.1186/s12940-016-0117-0
- Ingaramo P, Alarcon R, Munoz-de-Toro M, Luque EH (2020) Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 518:110934. https://doi.org/10.1016/j.mce.2020.110934
- Lacroix R, Kurrasch DM (2023) Glyphosate toxicity: in vivo, in vitro, and epidemiological evidence. Toxicol Sci 192:131-140. https://doi.org/10.1093/toxsci/kfad018
- Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, Morris JG (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616-617:255-268. https://doi.org/10.1016/j.scitotenv.2017.10.309
- Mesnage R, Benbrook C, Antoniou MN (2019) Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides. Food Chem Toxicol 128:137-145. https://doi.org/10.1016/j.fct.2019.03.053
- Tush D, Maksimowicz MM, Meyer MT (2018) Dissipation of polyoxyethylene tallow amine (POEA) and glyphosate in an agricultural field and their co-occurrence on streambed sediments. Sci Total Environ 636:212-219. https://doi.org/10.1016/j.scitotenv.2018.04.246
- Zoller O, Rhyn P, Rupp H, Zarn JA, Geiser C (2018) Glyphosate residues in Swiss market foods: monitoring and risk evaluation. Food Addit Contam Part B 11:83-91. https://doi.org/10.1080/19393210.2017.1419509
- Ehling S, Reddy TM (2015) Analysis of glyphosate and aminomethylphosphonic acid in nutritional ingredients and milk by derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry. J Agric Food Chem 63:10562-10568. https://doi.org/10.1021/acs.jafc.5b04453
- Ledoux ML, Hettiarachchy N, Yu X, Howard L, Lee S-O (2020) Penetration of glyphosate into the food supply and the incidental impact on the honey supply and bees. Food Control 109:106859. https://doi.org/10.1016/j.foodcont.2019.106859
- Conrad A, Schroter-Kermani C, Hoppe H-W, Ruther M, Pieper S, Kolossa-Gehring M (2017) Glyphosate in German adults-time trend (2001-2015) of human exposure to a widely used herbicide. Int J Hyg Environ Health 220:8-16. https://doi.org/10.1016/j.ijheh.2016.09.016
- Kongtip P, Nankongnab N, Phupancharoensuk R, Palarach C, Sujirarat D, Sangprasert S, Sermsuk M, Sawattrakool N, Woskie SR (2017) Glyphosate and paraquat in maternal and fetal serums in Thai women. J Agromed 22:282-289. https://doi.org/10.1080/1059924X.2017.1319315
- Benachour N, Seralini G-E (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97-105. https://doi.org/10.1021/tx800218n
- Cai W, Yang X, Li X, Li H, Wang S, Wu Z, Yu M, Ma S, Tang S (2020) Low-dose Roundup induces developmental toxicity in bovine preimplantation embryos in vitro. Environ Sci Pollut Res 27:16451-16459. https://doi.org/10.1007/s11356-020-08183-8
- Yahfoufi ZA, Bai D, Khan SN, Chatzicharalampous C, Kohan-Ghadr H-R, Morris RT, Abu-Soud HM (2020) Glyphosate induces metaphase II oocyte deterioration and embryo damage by zinc depletion and overproduction of reactive oxygen species. Toxicology 439:152466. https://doi.org/10.1016/j.tox.2020.152466
- Bhardwaj JK, Mittal M, Saraf P (2019) Effective attenuation of glyphosate-induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol Reprod Dev 86:42-52. https://doi.org/10.1002/mrd.23084
- Perego MC, Schutz LF, Caloni F, Cortinovis C, Albonico M, Spicer LJ (2017) Evidence for direct effects of glyphosate on ovarian function: glyphosate influences steroidogenesis and proliferation of bovine granulosa but not theca cells in vitro. J Appl Toxicol 37:692-698. https://doi.org/10.1002/jat.3417
- Perego MC, Caloni F, Cortinovis C, Schutz LF, Albonico M, Tsuzukibashi D, Spicer LJ (2017) Influence of a Roundup formulation on glyphosate effects on steroidogenesis and proliferation of bovine granulosa cells in vitro. Chemosphere 188:274-279. https://doi.org/10.1016/j.chemosphere.2017.09.007
- Camacho A, Mejia D (2017) The health consequences of aerial spraying illicit crops: the case of Colombia. J Health Econ 54:147-160. https://doi.org/10.1016/j.jhealeco.2017.04.005
- Sanin LH, Carrasquilla G, Solomon KR, Cole DC, Marshall EJ (2009) Regional differences in time to pregnancy among fertile women from five Colombian regions with different use of glyphosate. J Toxicol Environ Health A 72:949-960. https://doi.org/10.1080/15287390902929691
- Mesnage R, Bernay B, Seralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313:122-128. https://doi.org/10.1016/j.tox.2012.09.006
- Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini G-E (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716-720. https://doi.org/10.1289/ehp.7728
- Mesnage R, Defarge N, Spiroux de Vendomois J, Seralini GE (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133-153. https://doi.org/10.1016/j.fct.2015.08.012
- Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res 23:18988-19001. https://doi.org/10.1007/s11356-016-7425-3
- Lliberos C, Liew SH, Mansell A, Hutt KJ (2021) The inflammasome contributes to depletion of the ovarian reserve during aging in mice. Front Cell Dev Biol 8:628473. https://doi.org/10.3389/fcell.2020.628473
- Navarro-Pando JM, Alcocer-Gomez E, Castejon-Vega B, Navarro-Villaran E, Condes-Hervas M, Mundi-Roldan M, Muntane J, Perez-Pulido AJ, Bullon P, Wang C, Hofman HM, Sanz A, Mbalaviele G, Ryfel B, Cordero MD (2021) Inhibition of the NLRP3 inflammasome prevents ovarian aging. Sci Adv 7:eabc7409. https://doi.org/10.1126/sciadv.abc7409
- Tatone C, Amicarelli F (2013) The aging ovary-the poor granulosa cells. Fertil Steril 99:12-17. https://doi.org/10.1016/j.fertnstert.2012.11.029
- Velarde MC, Menon R (2016) Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. J Endocrinol 230:R59-R76. https://doi.org/10.1530/joe-16-0018
- Matsuda F, Inoue N, Manabe N, Ohkura S (2012) Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev 58:44-50. https://doi.org/10.1262/jrd.2011-012
- Yeung CK, Wang G, Yao Y, Liang J, Chung CYT, Chuai M, Lee KKH, Yang X (2017) BRE modulates granulosa cell death to affect ovarian follicle development and atresia in the mouse. Cell Death Dis 8:e2697. https://doi.org/10.1038/cddis.2017.91
- Freund A, Orjalo AV, Desprez P-Y, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238-246. https://doi.org/10.1016/j.molmed.2010.03.003
- Salminen A, Ojala J, Kaarniranta K, Kauppinen A (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69:2999-3013. https://doi.org/10.1007/s00018-012-0962-0
- Man SM, Kanneganti T-D (2015) Regulation of inflammasome activation. Immunol Rev 265:6-21. https://doi.org/10.1111/imr.12296
- Yu J-W, Lee M-S (2016) Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res 39:1503-1518. https://doi.org/10.1007/s12272-016-0827-4
- Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477-489. https://doi.org/10.1038/s41577-019-0165-0
- Sun J, Guo Y, Fan Y, Wang Q, Zhang Q, Lai D (2021) Decreased expression of IDH1 by chronic unpredictable stress suppresses proliferation and accelerates senescence of granulosa cells through ROS activated MAPK signaling pathways. Free Radic Biol Med 169:122-136. https://doi.org/10.1016/j.freeradbiomed.2021.04.016
- Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657-667. https://doi.org/10.1016/j.cell.2008.06.049
- Yang H, Wang H, Ren J, Chen Q, Chen ZJ (2017) cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 114:E4612-E4620. https://doi.org/10.1073/pnas.1705499114
- Liu J-Y, Souroullas GP, Diekman BO, Krishnamurthy J, Hall BM, Sorrentino JA, Parker JS, Sessions GA, Gudkov AV, Sharpless NE (2019) Cells exhibiting strong p16INK4a promoter activation in vivo display features of senescence. Proc Natl Acad Sci USA 116:2603-2611. https://doi.org/10.1073/pnas.1818313116
- Zheng Y, Humphry M, Maguire JJ, Bennett MR, Clarke MC (2013) Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-1alpha, controlling necrosis-induced sterile inflammation. Immunity 38:285-295. https://doi.org/10.1016/j.immuni.2013.01.008
- Feng H, Mou S-q, Li W-j, Zhang N, Zhou Z-y, Ding W, Bian Z-Y, Liao H-h (2020) Resveratrol inhibits ischemia-induced myocardial senescence signals and NLRP3 inflammasome activation. Oxid Med Cell Longev 2020:2647807. https://doi.org/10.1155/2020/2647807
- Zhou X, Chen M, Zeng X, Yang J, Deng H, Yi L, Mt Mi (2014) Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis 5:e1576. https://doi.org/10.1038/cddis.2014.530
- Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S, Ramoni R, Basini G (2018) Glyphosate affects swine ovarian and adipose stromal cell functions. Anim Reprod Sci 195:185-196. https://doi.org/10.1016/j.anireprosci.2018.05.023
- Tripathi A, Pandey V, Sahu AN, Singh A, Dubey PK (2019) Di-(2-ethylhexyl) phthalate (DEHP) inhibits steroidogenesis and induces mitochondria-ROS mediated apoptosis in rat ovarian granulosa cells. Toxicol Res 8:381-394. https://doi.org/10.1039/c8tx00263k
- Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD (2017) Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health 16:37. https://doi.org/10.1186/s12940-017-0242-4
- Lin X, Dai Y, Tong X, Xu W, Huang Q, Jin X, Li C, Zhou F, Zhou H, Lin X, Huang D, Zhang S (2020) Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol 30:101431. https://doi.org/10.1016/j.redox.2020.101431
- Uri-Belapolsky S, Shaish A, Eliyahu E, Grossman H, Kamari Y (2014) Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc Natl Acad Sci USA 111:12492-12497. https://doi.org/10.1073/pnas.1323955111