DOI QR코드

DOI QR Code

Elucidation of the effects of 2,5-hexandione as a metabolite of n-hexane on cognitive impairment in leptin-knockout mice (C57BL/6-Lepem1Shwl/Korl)

  • Hai Duc Nguyen (Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University) ;
  • Won Hee Jo (Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University) ;
  • Jae Ok Cha (Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University) ;
  • Ngoc Hong Minh Hoang (Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University) ;
  • Min‑Sun Kim (Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University)
  • Received : 2023.11.07
  • Accepted : 2024.02.17
  • Published : 2024.07.15

Abstract

Exposure to n-hexane and its metabolite 2,5-hexandione (HD) is a well-known cause of neurotoxicity, particularly in the peripheral nervous system. To date, few studies have focused on the neurotoxic effects of HD on cognitive impairment. Exposure to HD and diabetes mellitus can exacerbate neurotoxicity. There are links among HD, diabetes mellitus, and cognitive impairment; however, the specific mechanisms underlying them remain unclear. Therefore, we aimed to elucidate the neurotoxic effects of HD on cognitive impairment in ob/ob (C57BL/6-Lepem1Shwl/Korl) mice. We found that HD induced cognitive impairment by altering the expression of genes (FN1, AGT, ACTA2, MYH11, MKI67, MET, CTGF, and CD44), miRNAs (mmu-miR15a-5p, mmu-miR-17-5p, and mmu-miR-29a-3p), transcription factors (transcription factor AP-2 alpha [TFAP2A], serum response factor [Srf], and paired box gene 4 [PAX4]), and signaling pathways (ERK/CERB, PI3K/AKT, GSK-3β/p-tau/amyloid-β), as well as by causing neuroinflammation (TREM1/DAP12/NF-κB), oxidative stress, and apoptosis. The prevalent use of n-hexane in various industrial applications (for instance, shoe manufacturing, printing inks, paints, and varnishes) suggests that individuals with elevated body weight and glucose levels and those employed in high-risk workplaces have greater probability of cognitive impairment. Therefore, implementing screening strategies for HD-induced cognitive dysfunction is crucial.

Keywords

Acknowledgement

This study was supported by the Sunchon National University (Grant number: 2023-0319).

References

  1. Gerhardsson L, Hou L, Pettersson K (2021) Work-related exposure to organic solvents and the risk for multiple sclerosis-a systematic review. Int Arch Occup Environ Health 94:221-229. https://doi.org/10.1007/s00420-020-01564-z
  2. Schenker MB, Jacobs JA (1996) Respiratory effects of organic solvent exposure. Tuber Lung Dis 77:4-18. https://doi.org/10.1016/S0962-8479(96)90069-6
  3. Lam HR et al (1991) Effects of 2,5-hexanedione alone and in combination with acetone on radial arm maze behavior, the "brain-swelling" reaction and synaptosomal functions. Neurotoxicol Teratol 13:407-412. https://doi.org/10.1016/0892-0362(91)90089-F
  4. Nguyen HD et al (2022) 1,2-Diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: an in vivo and in vitro study. Int Immunopharm 108:108901. https://doi.org/10.1016/j.intimp.2022.108901
  5. Spencer PS, Schaumburg HH (1975) Experimental neuropathy produced by 2,5-hexanedione-a major metabolite of the neurotoxic industrial solvent methyl n-butyl ketone. J Neurol Neurosurg Psychiatry 38:771-775. https://doi.org/10.1136/jnnp.38.8.771
  6. LoPachin RM, He D, Reid ML (2005) 2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve. Neurotoxicology 26:229-240. https://doi.org/10.1016/j.neuro.2004.09.007
  7. Decaprio AP, Kinney EA, Fowke JH (1997) Regioselective binding of 2,5-hexanedione to high-molecular-weight rat neurofilament proteinsin vitro. Toxicol Appl Pharmacol 145:211-217. https://doi.org/10.1006/taap.1997.8181
  8. Zhang C et al (2018) 2,5-Hexanedione induces dopaminergic neurodegeneration through integrin α(M)β2/NADPH oxidase axis-mediated microglial activation. Cell Death Dis 9:60. https://doi.org/10.1038/s41419-017-0091-7
  9. Farr CH, Aldous CN, Sharma RP (1986) Influence of 2,5-hexanedione on rat brain amine synthesis and metabolism. J Environ Pathol Toxicol Oncol 6:361-368
  10. Carney R et al (2002) Early spatial memory deficit induced by 2,5-hexanedione in the rat. Toxicol Lett 128:107-115. https://doi.org/10.1016/S0378-4274(01)00538-0
  11. Nguyen JC, Killcross AS, Jenkins TA (2014) Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 8:375. https://doi.org/10.3389/fnins.2014.00375
  12. Kimura T et al (1998) Electrophysiological and biochemical effects of exposure to 2,5-hexanedione on peripheral nerve in experimental diabetic rats. J Occupat Health 40:148-153. https://doi.org/10.1539/joh.40.148
  13. Sanborn V et al (2020) Association between leptin, cognition, and structural brain measures among "early" middle-aged adults: results from the framingham heart study third generation cohort. J Alzheimers Dis 77:1279-1289. https://doi.org/10.3233/jad-191247
  14. Watanabe T, Sakamoto K (2021) Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 170:217-235. https://doi.org/10.1016/j.neures.2020.11.002
  15. Schepers J et al (2020) Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res 382:421-426. https://doi.org/10.1007/s00441-020-03266-x
  16. Drel VR et al (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335-3343. https://doi.org/10.2337/db06-0885
  17. Labad J et al (2012) Serum leptin and cognitive function in people with type 2 diabetes. Neurobiol Aging 33:2938-2941. e2. https://doi.org/10.1016/j.neurobiolaging.2012.02.026
  18. Nguyen HD et al (2023) Risperidone ameliorated 1,2-diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharm 115:109726. https://doi.org/10.1016/j.intimp.2023.109726
  19. Nguyen HD et al (2022) Curcumin-attenuated TREM-1/DAP12/NLRP3/caspase-1/IL1B, TLR4/NF-κB pathways, and tau hyperphosphorylation induced by 1,2-diacetyl benzene: an in vitro and in silico study. Neurotox Res 40:1272-1291. https://doi.org/10.1007/s12640-022-00535-1
  20. Zhou Y et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6
  21. Zhang L et al (2010) Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 117:180-189. https://doi.org/10.1093/toxsci/kfq176
  22. Wen Y et al (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28:2624-2632. https://doi.org/10.1523/jneurosci.5245-07.2008
  23. Huang R et al (2021) 2,5-hexanedione induces NLRP3 inflammasome activation and neurotoxicity through NADPH oxidase-dependent pathway. Free Rad Biol Med 162:561-570. https://doi.org/10.1016/j.freeradbiomed.2020.11.013
  24. Qi B et al (2019) Proapoptotic effects of 2,5-hexanedione on pheochromocytoma cells via oxidative injury. Mol Med Rep 20:3249-3255. https://doi.org/10.3892/mmr.2019.10546
  25. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205-214. https://doi.org/10.1038/nrd1330
  26. Luo M et al (2021) 2,5-Hexanedione induced apoptosis in rat spinal cord neurons and VSC4.1 cells via the proNGF/p75NTR and JNK pathways. Biosci Rep 41:BSR20204264. https://doi.org/10.1042/bsr20204264
  27. Albert-Gasco H et al (2020) MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21:4471. https://doi.org/10.3390/ijms21124471
  28. Murphy MP, LeVine H 3rd (2010) Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 19:311-323. https://doi.org/10.3233/jad-2010-1221
  29. Liu SL et al (2016) The role of Cdk5 in Alzheimer's disease. Mol Neurobiol 53:4328-4342. https://doi.org/10.1007/s12035-015-9369-x
  30. Li S et al (2017) Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells. Ind Health 55:108-118. https://doi.org/10.2486/indhealth.2016-0044
  31. Rogers JT et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences*. J Biol Chem 274:6421-6431. https://doi.org/10.1074/jbc.274.10.6421
  32. Long J et al (2016) Discovery of novel biomarkers for Alzheimer's disease from blood. Dis Markers 2016:4250480. https://doi.org/10.1155/2016/4250480
  33. Loera-Valencia R et al (2021) Brain renin-angiotensin system as novel and potential therapeutic target for Alzheimer's disease. Int J Mol Sci 22:10139. https://doi.org/10.3390/ijms221810139
  34. Uhrig M et al (2009) New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering. PLoS One 4:e6779. https://doi.org/10.1371/journal.pone.0006779
  35. Blue EE et al (2021) Non-coding variants in MYH11, FZD3, and SORCS3 are associated with dementia in women. Alzheimers Dement 17:215-225. https://doi.org/10.1002/alz.12181
  36. Sala Frigerio C et al (2019) The major risk factors for Alzheimer's disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293-1306.e6. https://doi.org/10.1016/j.celrep.2019.03.099
  37. Hamasaki H et al (2014) Down-regulation of MET in hippocampal neurons of Alzheimer's disease brains. Neuropathology 34:284-290. https://doi.org/10.1111/neup.12095
  38. Zhao Z et al (2005) Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology. FASEB J 19:2081-2082. https://doi.org/10.1096/f.05-4359fje
  39. Pinner E et al (2017) CD44 splice variants as potential players in Alzheimer's disease pathology. J Alzheimers Dis 58:1137-1149. https://doi.org/10.3233/jad-161245
  40. Carlson ES et al (2008) Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis. Brain Res 1237:75-83. https://doi.org/10.1016/j.brainres.2008.07.109
  41. Landeira BS et al (2018) Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cereb Cortex 28:538-548. https://doi.org/10.1093/cercor/bhw387
  42. Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121-145. https://doi.org/10.1152/physrev.00017.2008
  43. Liu T et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23
  44. Wojcieszak J, Kuczynska K, Zawilska JB (2022) Role of chemokines in the development and progression of Alzheimer's disease. J Mol Neurosci 72:1929-1951. https://doi.org/10.1007/s12031-022-02047-1
  45. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917-930. https://doi.org/10.1038/nrn1555
  46. O' Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/of switches in aging, cognitive decline and Alzheimer's disease. Exp Gerontol 48:647-653. https://doi.org/10.1016/j.exger.2013.02.025
  47. Sorensen SS, Nygaard AB, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia-an exploratory study. Transl Neurodegener 5:6. https://doi.org/10.1186/s40035-016-0053-5
  48. Xiu M et al (2022) MicroRNA-17-5p protects against propofol anesthesia-induced neurotoxicity and autophagy impairment via targeting BCL2L11. Comput Math Methods Med 2022:6018037. https://doi.org/10.1155/2022/6018037
  49. Nguyen HD, Kim M-S (2022) Exposure to a mixture of heavy metals induces cognitive impairment: genes and microRNAs involved. Toxicology 471:153164. https://doi.org/10.1016/j.tox.2022.153164
  50. Estfanous S et al (2021) Elevated expression of MiR-17 in microglia of Alzheimer's disease patients abrogates autophagy-mediated amyloid-β degradation. Front Immunol 12:705581. https://doi.org/10.3389/fmmu.2021.705581
  51. Wingo AP et al (2022) Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 12:47. https://doi.org/10.1038/s41398-022-01806-3
  52. Ma M et al (2022) Identification of Alzheimer's disease molecular subtypes based on parallel large-scale sequencing. Front Aging Neurosci 14:770136. https://doi.org/10.3389/fnagi.2022.770136
  53. Bell RD et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143-153. https://doi.org/10.1038/ncb1819
  54. Majumder P et al (2021) A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and type 2 diabetes. Biochem J 478:3297-3317. https://doi.org/10.1042/bcj20210175