Acknowledgement
This study was supported by the Sunchon National University (Grant number: 2023-0319).
References
- Gerhardsson L, Hou L, Pettersson K (2021) Work-related exposure to organic solvents and the risk for multiple sclerosis-a systematic review. Int Arch Occup Environ Health 94:221-229. https://doi.org/10.1007/s00420-020-01564-z
- Schenker MB, Jacobs JA (1996) Respiratory effects of organic solvent exposure. Tuber Lung Dis 77:4-18. https://doi.org/10.1016/S0962-8479(96)90069-6
- Lam HR et al (1991) Effects of 2,5-hexanedione alone and in combination with acetone on radial arm maze behavior, the "brain-swelling" reaction and synaptosomal functions. Neurotoxicol Teratol 13:407-412. https://doi.org/10.1016/0892-0362(91)90089-F
- Nguyen HD et al (2022) 1,2-Diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: an in vivo and in vitro study. Int Immunopharm 108:108901. https://doi.org/10.1016/j.intimp.2022.108901
- Spencer PS, Schaumburg HH (1975) Experimental neuropathy produced by 2,5-hexanedione-a major metabolite of the neurotoxic industrial solvent methyl n-butyl ketone. J Neurol Neurosurg Psychiatry 38:771-775. https://doi.org/10.1136/jnnp.38.8.771
- LoPachin RM, He D, Reid ML (2005) 2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve. Neurotoxicology 26:229-240. https://doi.org/10.1016/j.neuro.2004.09.007
- Decaprio AP, Kinney EA, Fowke JH (1997) Regioselective binding of 2,5-hexanedione to high-molecular-weight rat neurofilament proteinsin vitro. Toxicol Appl Pharmacol 145:211-217. https://doi.org/10.1006/taap.1997.8181
- Zhang C et al (2018) 2,5-Hexanedione induces dopaminergic neurodegeneration through integrin α(M)β2/NADPH oxidase axis-mediated microglial activation. Cell Death Dis 9:60. https://doi.org/10.1038/s41419-017-0091-7
- Farr CH, Aldous CN, Sharma RP (1986) Influence of 2,5-hexanedione on rat brain amine synthesis and metabolism. J Environ Pathol Toxicol Oncol 6:361-368
- Carney R et al (2002) Early spatial memory deficit induced by 2,5-hexanedione in the rat. Toxicol Lett 128:107-115. https://doi.org/10.1016/S0378-4274(01)00538-0
- Nguyen JC, Killcross AS, Jenkins TA (2014) Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 8:375. https://doi.org/10.3389/fnins.2014.00375
- Kimura T et al (1998) Electrophysiological and biochemical effects of exposure to 2,5-hexanedione on peripheral nerve in experimental diabetic rats. J Occupat Health 40:148-153. https://doi.org/10.1539/joh.40.148
- Sanborn V et al (2020) Association between leptin, cognition, and structural brain measures among "early" middle-aged adults: results from the framingham heart study third generation cohort. J Alzheimers Dis 77:1279-1289. https://doi.org/10.3233/jad-191247
- Watanabe T, Sakamoto K (2021) Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 170:217-235. https://doi.org/10.1016/j.neures.2020.11.002
- Schepers J et al (2020) Structural and functional consequences in the amygdala of leptin-deficient mice. Cell Tissue Res 382:421-426. https://doi.org/10.1007/s00441-020-03266-x
- Drel VR et al (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335-3343. https://doi.org/10.2337/db06-0885
- Labad J et al (2012) Serum leptin and cognitive function in people with type 2 diabetes. Neurobiol Aging 33:2938-2941. e2. https://doi.org/10.1016/j.neurobiolaging.2012.02.026
- Nguyen HD et al (2023) Risperidone ameliorated 1,2-diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharm 115:109726. https://doi.org/10.1016/j.intimp.2023.109726
- Nguyen HD et al (2022) Curcumin-attenuated TREM-1/DAP12/NLRP3/caspase-1/IL1B, TLR4/NF-κB pathways, and tau hyperphosphorylation induced by 1,2-diacetyl benzene: an in vitro and in silico study. Neurotox Res 40:1272-1291. https://doi.org/10.1007/s12640-022-00535-1
- Zhou Y et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6
- Zhang L et al (2010) Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 117:180-189. https://doi.org/10.1093/toxsci/kfq176
- Wen Y et al (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28:2624-2632. https://doi.org/10.1523/jneurosci.5245-07.2008
- Huang R et al (2021) 2,5-hexanedione induces NLRP3 inflammasome activation and neurotoxicity through NADPH oxidase-dependent pathway. Free Rad Biol Med 162:561-570. https://doi.org/10.1016/j.freeradbiomed.2020.11.013
- Qi B et al (2019) Proapoptotic effects of 2,5-hexanedione on pheochromocytoma cells via oxidative injury. Mol Med Rep 20:3249-3255. https://doi.org/10.3892/mmr.2019.10546
- Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205-214. https://doi.org/10.1038/nrd1330
- Luo M et al (2021) 2,5-Hexanedione induced apoptosis in rat spinal cord neurons and VSC4.1 cells via the proNGF/p75NTR and JNK pathways. Biosci Rep 41:BSR20204264. https://doi.org/10.1042/bsr20204264
- Albert-Gasco H et al (2020) MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int J Mol Sci 21:4471. https://doi.org/10.3390/ijms21124471
- Murphy MP, LeVine H 3rd (2010) Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 19:311-323. https://doi.org/10.3233/jad-2010-1221
- Liu SL et al (2016) The role of Cdk5 in Alzheimer's disease. Mol Neurobiol 53:4328-4342. https://doi.org/10.1007/s12035-015-9369-x
- Li S et al (2017) Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells. Ind Health 55:108-118. https://doi.org/10.2486/indhealth.2016-0044
- Rogers JT et al (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences*. J Biol Chem 274:6421-6431. https://doi.org/10.1074/jbc.274.10.6421
- Long J et al (2016) Discovery of novel biomarkers for Alzheimer's disease from blood. Dis Markers 2016:4250480. https://doi.org/10.1155/2016/4250480
- Loera-Valencia R et al (2021) Brain renin-angiotensin system as novel and potential therapeutic target for Alzheimer's disease. Int J Mol Sci 22:10139. https://doi.org/10.3390/ijms221810139
- Uhrig M et al (2009) New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering. PLoS One 4:e6779. https://doi.org/10.1371/journal.pone.0006779
- Blue EE et al (2021) Non-coding variants in MYH11, FZD3, and SORCS3 are associated with dementia in women. Alzheimers Dement 17:215-225. https://doi.org/10.1002/alz.12181
- Sala Frigerio C et al (2019) The major risk factors for Alzheimer's disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293-1306.e6. https://doi.org/10.1016/j.celrep.2019.03.099
- Hamasaki H et al (2014) Down-regulation of MET in hippocampal neurons of Alzheimer's disease brains. Neuropathology 34:284-290. https://doi.org/10.1111/neup.12095
- Zhao Z et al (2005) Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology. FASEB J 19:2081-2082. https://doi.org/10.1096/f.05-4359fje
- Pinner E et al (2017) CD44 splice variants as potential players in Alzheimer's disease pathology. J Alzheimers Dis 58:1137-1149. https://doi.org/10.3233/jad-161245
- Carlson ES et al (2008) Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis. Brain Res 1237:75-83. https://doi.org/10.1016/j.brainres.2008.07.109
- Landeira BS et al (2018) Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cereb Cortex 28:538-548. https://doi.org/10.1093/cercor/bhw387
- Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121-145. https://doi.org/10.1152/physrev.00017.2008
- Liu T et al (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23
- Wojcieszak J, Kuczynska K, Zawilska JB (2022) Role of chemokines in the development and progression of Alzheimer's disease. J Mol Neurosci 72:1929-1951. https://doi.org/10.1007/s12031-022-02047-1
- Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917-930. https://doi.org/10.1038/nrn1555
- O' Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/of switches in aging, cognitive decline and Alzheimer's disease. Exp Gerontol 48:647-653. https://doi.org/10.1016/j.exger.2013.02.025
- Sorensen SS, Nygaard AB, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia-an exploratory study. Transl Neurodegener 5:6. https://doi.org/10.1186/s40035-016-0053-5
- Xiu M et al (2022) MicroRNA-17-5p protects against propofol anesthesia-induced neurotoxicity and autophagy impairment via targeting BCL2L11. Comput Math Methods Med 2022:6018037. https://doi.org/10.1155/2022/6018037
- Nguyen HD, Kim M-S (2022) Exposure to a mixture of heavy metals induces cognitive impairment: genes and microRNAs involved. Toxicology 471:153164. https://doi.org/10.1016/j.tox.2022.153164
- Estfanous S et al (2021) Elevated expression of MiR-17 in microglia of Alzheimer's disease patients abrogates autophagy-mediated amyloid-β degradation. Front Immunol 12:705581. https://doi.org/10.3389/fmmu.2021.705581
- Wingo AP et al (2022) Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 12:47. https://doi.org/10.1038/s41398-022-01806-3
- Ma M et al (2022) Identification of Alzheimer's disease molecular subtypes based on parallel large-scale sequencing. Front Aging Neurosci 14:770136. https://doi.org/10.3389/fnagi.2022.770136
- Bell RD et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143-153. https://doi.org/10.1038/ncb1819
- Majumder P et al (2021) A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and type 2 diabetes. Biochem J 478:3297-3317. https://doi.org/10.1042/bcj20210175