DOI QR코드

DOI QR Code

PD-L1 Aptamer-functionalized Liposome Containing SAHA for Anti-lung Cancer Immunotherapy

  • Si-Yeon Ryu (Department of Biomedical Laboratory Science, Konyang University) ;
  • Se-Yun Hong (Department of Biomedical Laboratory Science, Konyang University) ;
  • Keun-Sik Kim (Department of Biomedical Laboratory Science, Konyang University)
  • 투고 : 2024.03.11
  • 심사 : 2024.06.05
  • 발행 : 2024.06.30

초록

Liposomes are one of the most actively studied and promising drug delivery systems for the treatment of various diseases. In this study, an aptamer-conjugated liposome called "aptamosome" was used, in which an anti-PD-L1 aptamer targeting cancer cells was conjugated to the liposome. These aptamosomes showed remarkable cellular uptake and efficient delivery to Lewis lung carcinoma 2 (LL/2) cancer cells. In addition, suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACi), was delivered through this aptamer to induce a strong anticancer immunotherapeutic effect. The results of this study showed that when LL/2 cells were treated with SAHA-entrapped aptamosome [SAHA] and liposome [SAHA] and free SAHA, aptamosome [SAHA] improved cell death compared with that of liposomes [SAHA] or free SAHA, and it has demonstrated anticancer efficacy. Moreover, aptamosome [SAHA] induce the secretion of chemokines that promote the migration of activated T cells into tumor tissues. Finally, in vivo experiments showed that aptamosome [SAHA] significantly inhibited the growth rate of LL/2 tumors. Therefore, liposomes combined with an anti-PD-L1 aptamer for efficient SAHA delivery are suggested as an excellent model for drug delivery systems suitable for targeting cancer cells.

키워드

과제정보

Schematic Fig. 5A created with BioRender.com (2024).

참고문헌

  1. Abdel-Rahman O, Helbling D, Schmidt J, et al. Treatment-associated fatigue in cancer patients treated with immune checkpoint inhibitors; a systematic review and meta-analysis. Clin Oncol (R. Coll. Radiol). 2016. 28: 127.
  2. Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: Rivals or allies in cancer targeted therapy? Explor Target Antitumor Ther. 2021. 2: 107-121.
  3. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013. 8: 102-102.
  4. Alshaer W, Hillaireau H, Vergnaud J, et al. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018. 271: 98-106.
  5. Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angewandte Chemie International Edition. 2006. 45: 8149-8152.
  6. Baxi S, Yang A, Gennarelli RL, et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: Systematic review and meta-analysis. BMJ. 2018. 360: k793.
  7. Chen S, Dominik PK, Stanfield J, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 2021. 9: e003464. doi: 10.1136/jitc-003464.
  8. Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol. 2018. 98: 65-74.
  9. Ganson NJ, Povsic TJ, Sullenger BA, et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 2016. 137: 1610-1613.e7.
  10. Gao T, Mao Z, Li W, Pei R. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect. J Mater Chem B. 2021. 9: 746-756.
  11. Gilboa E, Berezhnoy A, Schrand B. Reducing toxicity of immune therapy using aptamer-targeted drug delivery. Cancer Immunol Res. 2015. 3: 1195-1200.
  12. Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017. 2: e000213-000213. eCollection 2017.
  13. Jain A, Maheshwari V, Alam K, Mehdi G, Sharma SC. Apoptosis in premalignant and malignant squamous cell lesions of the oral cavity: A light microscopic study. Indian J Pathol Microbiol. 2009. 52: 164-166.
  14. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020. 70: 86-104.
  15. Kim M, Lee JS, Kim W, et al. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release. 2022. 348: 893-910.
  16. Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021. 176: 113851.
  17. Le VKH, Pham TPD, Truong DH. Delivery systems for vorinostat in cancer treatment: An updated review. Journal of Drug Delivery Science and Technology. 2021. 61: 102334.
  18. Li T, Yao F, An Y, Li X, Duan J, Yang X. Novel complex of PD-L1 aptamer and holliday junction enhances antitumor efficacy in vivo. Molecules. 2021. 26: 1067. doi: 10.3390/molecules26041067.
  19. Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy: A comprehensive review and perspective of the 2018 china cancer immunotherapy workshop in beijing. J. Hematol Oncol. 2018. 11: 142-143.
  20. Liu B, Zhang J, Liao J, et al. Aptamer-functionalized nanoparticles for drug delivery. J Biomed Nanotechnol. 2014. 10: 3189-3203.
  21. Lv H, Wang T, Ma F, et al. Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy. Biomed Mater. 2022. 17: 10.1088/1748-605X/ac5415.
  22. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007. 12: 1247-1252.
  23. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019. 16: 563-580.
  24. Melosky B, Juergens R, McLeod D, et al. Immune checkpoint-inhibitors and chemoradiation in stage III unresectable non-small cell lung cancer. Lung Cancer. 2019. 134: 259-267.
  25. Nayak A, Raikar A, Kotrashetti V, Nayak R, Shree S, Kambali S. Histochemical detection and comparison of apoptotic cells in the gingival epithelium using hematoxylin and eosin and methyl green-pyronin: A pilot study. J Indian Soc Periodontol. 2016. 20: 294-298.
  26. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Medical Applications. 2020. 61-91.
  27. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019. 18: 175-196.
  28. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 2018. 175: 313-326.
  29. Terranova-Barberio M, Thomas S, Ali N, et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget. 2017. 8: 114156-114172.
  30. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014. 124: 30-39.
  31. Xu W, Siddiqui IA, Nihal M, et al. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials. 2013. 34: 5244-5253.
  32. Zheng H, Zhao W, Yan C, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2016. 22: 4119-4132.