DOI QR코드

DOI QR Code

Factors influencing consumers' continuance intention in online grocery shopping: a cross-sectional study using application behavior reasoning theory

  • Binglin Liu (Department of Foods and Nutrition, Kookmin University) ;
  • Min A Lee (Department of Foods and Nutrition, Kookmin University)
  • Received : 2024.05.14
  • Accepted : 2024.05.30
  • Published : 2024.06.30

Abstract

Objectives: Online grocery shopping has gained traction with the digital transformation of retail. This study constructs a behavioral model combining values, attitudes, and reasons for behavior-specifically, facilitators and resistance-to provide a more novel discussion and further understand the relative influences of the various factors affecting continuance intention in online grocery shopping. Methods: Data were collected through an online questionnaire from consumers who had engaged in online grocery shopping during the past month in Seoul, Korea. All collected data were analyzed using descriptive analysis, and model validation was performed using partial least squares structural equation modeling. Results: Continuance intention is primarily driven by facilitative factors (compatibility, relative advantage, and ubiquity). Attitude can also positively influence continuance intention. Although resistance factors (price, tradition, and risk) do not significantly affect continuance intention, they negatively affect attitude. Values significantly influence consumers' reasoning processes but not their attitude. Conclusions: These findings explain the key influences on consumers' online grocery shopping behavior in Seoul and provide additional discussion and literature on consumer behavior and market management. To expand the online grocery market, consumers should be made aware of the potential benefits of the online channel; the barriers they encounter should be reduced. This will help sustain online grocery shopping behavior. Furthermore, its positive impact on attitude will further strengthen consumers' continuance intention.

Keywords

References

  1. Opensurvey Inc. Online grocery shopping trend report 2023 [Internet]. Seoul: Opensurvey Inc.; 2023 Jan 30 [updated 2023 Jan 30; cited 2023 Dec 22]. Available from: https://blog.opensurvey.co.kr/trendreport/online-grocery-2023/.
  2. Statistics Korea. Online shopping trends in February 2023 [Internet]. Sejong: Ministry of Culture, Sports and Tourism; 2023 Apr 3 [updated 2023 Apr 3; cited 2023 Dec 10]. Available from: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156560713.
  3. Bruggemann P, Olbrich R. The impact of COVID-19 pandemic restrictions on offline and online grocery shopping: new normal or old habits? Electron Commerce Res 2023; 23(4): 2051-2072. https://doi.org/10.1007/s10660-022-09658-1
  4. Tyrvainen O, Karjaluoto H. Online grocery shopping before and during the COVID-19 pandemic: a metaanalytical review. Telemat Inform 2022; 71: 101839.
  5. Korea Rural Economic Institute (KREI). Food consumption behavior survey statistics report 2021 [Internet]. Naju: KREI; 2021 Dec [updated 2022 Apr 13; cited 2023 Dec 20]. Available from: https://www.krei.re.kr/foodSurvey/selectBbsNttView.do?key=806&bbsNo=449&nttNo=158542.
  6. Seok H. 'Still low online penetration despite rapid growth' Online food market growth "High". Korea Logistics News [Internet]. 2022 May 18 [cited 2023 Dec 20]. Available from: https://www.klnews.co.kr/news/articleView.html?idxno=304588.
  7. Driediger F, Bhatiasevi V. Online grocery shopping in Thailand: consumer acceptance and usage behavior. J Retailing Consum Serv 2019; 48: 224-237. https://doi.org/10.1016/j.jretconser.2019.02.005
  8. Kim H, Kim M. Analysis of online food purchase behavior and factors determining online purchases by adult consumers. J Korean Soc Food Sci Nutr 2019; 48(1): 97-108. https://doi.org/10.3746/jkfn.2019.48.1.097
  9. Kim H. Use of mobile grocery shopping application: motivation and decision-making process among South Korean consumers. J Theor Appl Electron Commer Res 2021; 16(7): 2672-2693. https://doi.org/10.3390/jtaer16070147
  10. Lim SK, Oh YE, Park KS. Study on the difference in consumers' perception of the E-commerce utilization factors according to COVID-19: focused on fresh food. e-Bus Stud 2022; 23(1): 75-94. https://doi.org/10.20462/tebs.2022.2.23.1.75
  11. Roggeveen AL, Sethuraman R. How the COVID-19 pandemic may change the world of retailing. J Retailing 2020; 96(2): 169-171. https://doi.org/10.1016/j.jretai.2020.04.002
  12. Cruz-Cardenas J, Zabelina E, Guadalupe-Lanas J, Palacio-Fierro A, Ramos-Galarza C. COVID-19, consumer behavior, technology, and society: a literature review and bibliometric analysis. Technol Forecast Soc Change 2021; 173: 121179.
  13. Usai A, Fiano F, Messeni Petruzzelli A, Paoloni P, Farina Briamonte M, Orlando B. Unveiling the impact of the adoption of digital technologies on firms' innovation performance. J Bus Res 2021; 133: 327-336. https://doi.org/10.1016/j.jbusres.2021.04.035
  14. Westaby JD. Behavioral reasoning theory: identifying new linkages underlying intentions and behavior. Organ Behav Hum Decis Process 2005; 98(2): 97-120. https://doi.org/10.1016/j.obhdp.2005.07.003
  15. Taras V, Kirkman BL, Steel P. Examining the impact of culture's consequences: a three-decade, multilevel, meta-analytic review of Hofstede's cultural value dimensions. J Appl Psychol 2010; 95(3): 405-439. https://doi.org/10.1037/a0018938
  16. Schwartz SH. Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. Adv Exp Soc Psychol 1992; 25: 1-65. https://doi.org/10.1016/S0065-2601(08)60281-6
  17. Gupta A, Arora N. Understanding determinants and barriers of mobile shopping adoption using behavioral reasoning theory. J Retailing Consum Serv 2017; 36: 1-7. https://doi.org/10.1016/j.jretconser.2016.12.012
  18. Hansen T. Consumer values, the theory of planned behaviour and online grocery shopping. Int J Consum Stud 2008; 32(2): 128-137. https://doi.org/10.1111/j.1470-6431.2007.00655.x
  19. Hansen T. Consumer adoption of online grocery buying: a discriminant analysis. Int J Retail Distrib Manag 2005; 33(2): 101-121. https://doi.org/10.1108/09590550510581449
  20. Rogers EM, Singhal A, Quinlan MM. Diffusion of innovations. In: Stacks DW, Salwen MB, Eichhorn KC, editors. An Integrated Approach to Communication Theory and Research. 2nd ed. New York, NY: Routledge; 2014. p. 432-448.
  21. Verhoef PC, Langerak F. Possible determinants of consumers' adoption of electronic grocery shopping in the Netherlands. J Retailing Consum Serv 2001; 8(5): 275-285. https://doi.org/10.1016/S0969-6989(00)00033-3
  22. Cao Q, Niu X. Integrating context-awareness and UTAUT to explain Alipay user adoption. Int J Ind Ergon 2019; 69: 9-13. https://doi.org/10.1016/j.ergon.2018.09.004
  23. Okazaki S, Mendez F. Perceived ubiquity in mobile services. J Interact Market 2013; 27(2): 98-111. https://doi.org/10.1016/j.intmar.2012.10.001
  24. Agag G, El-Masry AA. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: an integration of innovation diffusion theory and TAM with trust. Comput Human Behav 2016; 60: 97-111. https://doi.org/10.1016/j.chb.2016.02.038
  25. Kleijnen M, Lee N, Wetzels M. An exploration of consumer resistance to innovation and its antecedents. J Econ Psychol 2009; 30(3): 344-357. https://doi.org/10.1016/j.joep.2009.02.004
  26. Claudy MC, Garcia R, O'Driscoll A. Consumer resistance to innovation-a behavioral reasoning perspective. J Acad Mark Sci 2015; 43(4): 528-544. https://doi.org/10.1007/s11747-014-0399-0
  27. Prabowo H, Hindarwati EN, Yuniarty. Online grocery shopping adoption: a systematic literature review. In: 2020 International Conference on Information Management and Technology (ICIMTech); 2020 Aug 13-14; Bandung, Indonesia. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2020. p. 40-45.
  28. Dhir A, Koshta N, Goyal RK, Sakashita M, Almotairi M. Behavioral reasoning theory (BRT) perspectives on E-waste recycling and management. J Clean Prod 2021; 280: 124269.
  29. Claudy MC, Peterson M, O'Driscoll A. Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. J Macromark 2013; 33(4): 273-287. https://doi.org/10.1177/0276146713481605
  30. Lian JW, Yen DC. Online shopping drivers and barriers for older adults: age and gender differences. Comput Human Behav 2014; 37: 133-143. https://doi.org/10.1016/j.chb.2014.04.028
  31. Gupta A, Arora N. Consumer adoption of m-banking: a behavioral reasoning theory perspective. Int J Bank Mark 2017; 35(4): 733-747. https://doi.org/10.1108/IJBM-11-2016-0162
  32. Nguyen GD, Ha MT. The role of user adaptation and trust in understanding continuance intention towards mobile shopping: an extended expectation-confirmation model. Cogent Bus Manag 2021; 8(1): 1980248.
  33. Tufail HS, Yaqub RMS, Alsuhaibani AM, Ramzan S, Shahid AU, Refat MS. Consumers' purchase intention of suboptimal food using behavioral reasoning theory: a food waste reduction strategy. Sustainability 2022; 14(14): 8905.
  34. Pillai R, Sivathanu B. An empirical study on the adoption of M-learning apps among IT/ITeS employees. Interact Technol Smart Educ 2018; 15(3): 182-204. https://doi.org/10.1108/ITSE-01-2018-0002
  35. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process 1991; 50(2): 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  36. Bosnjak M, Ajzen I, Schmidt P. The theory of planned behavior: selected recent advances and applications. Eur J Psychol 2020; 16(3): 352-356. https://doi.org/10.5964/ejop.v16i3.3107
  37. Peterson M, Simkins T. Consumers' processing of mindful commercial car sharing. Bus Strategy Environ 2019; 28(3): 457-465. https://doi.org/10.1002/bse.2221
  38. Ashfaq M, Zhang Q, Ali F, Waheed A, Nawaz S. You plant a virtual tree, we'll plant a real tree: understanding users' adoption of the Ant Forest mobile gaming application from a behavioral reasoning theory perspective. J Clean Prod 2021; 310: 127394.
  39. Bhattacherjee A. Understanding information systems continuance: an expectation-confirmation model. Manage Inf Syst Q 2001; 25(3): 351.
  40. Su M, Fang M, Kim J, Park KS. Sustainable marketing innovation and consumption: evidence from cold chain food online retail. J Clean Prod 2022; 340: 130806.
  41. An D, Ji S, Jan IU. Investigating the determinants and barriers of purchase intention of innovative new products. Sustainability 2021; 13(2): 740.
  42. Hair JF, Risher JJ, Sarstedt M, Ringle CM. When to use and how to report the results of PLS-SEM. Eur Bus Rev 2019; 31(1): 2-24. https://doi.org/10.1108/EBR-11-2018-0203
  43. Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 2015; 43(1): 115-135. https://doi.org/10.1007/s11747-014-0403-8
  44. Nascimento B, Oliveira T, Tam C. Wearable technology: what explains continuance intention in smartwatches? J Retailing Consum Serv 2018; 43: 157-169. https://doi.org/10.1016/j.jretconser.2018.03.017
  45. Austin JT, Vancouver JB. Goal constructs in psychology: structure, process, and content. Psychol Bull 1996; 120(3): 338-375. https://doi.org/10.1037/0033-2909.120.3.338
  46. Zheng Q, Chen J, Zhang R, Wang HH. What factors affect Chinese consumers' online grocery shopping? Product attributes, e-vendor characteristics and consumer perceptions. China Agric Econ Rev 2020; 12(2): 193-213. https://doi.org/10.1108/CAER-09-2018-0201
  47. Wood W. Attitude change: persuasion and social influence. Annu Rev Psychol 2000; 51(1): 539-570. https://doi.org/10.1146/annurev.psych.51.1.539
  48. Bavel JJ, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav 2020; 4(5): 460-471. https://doi.org/10.1038/s41562-020-0884-z
  49. Lim H, Widdows R, Hooker NH. Web content analysis of e-grocery retailers: a longitudinal study. Int J Retail Distrib Manag 2009; 37(10): 839-851. https://doi.org/10.1108/09590550910988020
  50. Kim Y, Kim B. Selection attributes of innovative digital platform-based subscription services: a case of South Korea. J Open Innov Technol Mark Complex 2020; 6(3): 70.