참고문헌
- Opensurvey Inc. Online grocery shopping trend report 2023 [Internet]. Seoul: Opensurvey Inc.; 2023 Jan 30 [updated 2023 Jan 30; cited 2023 Dec 22]. Available from: https://blog.opensurvey.co.kr/trendreport/online-grocery-2023/.
- Statistics Korea. Online shopping trends in February 2023 [Internet]. Sejong: Ministry of Culture, Sports and Tourism; 2023 Apr 3 [updated 2023 Apr 3; cited 2023 Dec 10]. Available from: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156560713.
- Bruggemann P, Olbrich R. The impact of COVID-19 pandemic restrictions on offline and online grocery shopping: new normal or old habits? Electron Commerce Res 2023; 23(4): 2051-2072. https://doi.org/10.1007/s10660-022-09658-1
- Tyrvainen O, Karjaluoto H. Online grocery shopping before and during the COVID-19 pandemic: a metaanalytical review. Telemat Inform 2022; 71: 101839.
- Korea Rural Economic Institute (KREI). Food consumption behavior survey statistics report 2021 [Internet]. Naju: KREI; 2021 Dec [updated 2022 Apr 13; cited 2023 Dec 20]. Available from: https://www.krei.re.kr/foodSurvey/selectBbsNttView.do?key=806&bbsNo=449&nttNo=158542.
- Seok H. 'Still low online penetration despite rapid growth' Online food market growth "High". Korea Logistics News [Internet]. 2022 May 18 [cited 2023 Dec 20]. Available from: https://www.klnews.co.kr/news/articleView.html?idxno=304588.
- Driediger F, Bhatiasevi V. Online grocery shopping in Thailand: consumer acceptance and usage behavior. J Retailing Consum Serv 2019; 48: 224-237. https://doi.org/10.1016/j.jretconser.2019.02.005
- Kim H, Kim M. Analysis of online food purchase behavior and factors determining online purchases by adult consumers. J Korean Soc Food Sci Nutr 2019; 48(1): 97-108. https://doi.org/10.3746/jkfn.2019.48.1.097
- Kim H. Use of mobile grocery shopping application: motivation and decision-making process among South Korean consumers. J Theor Appl Electron Commer Res 2021; 16(7): 2672-2693. https://doi.org/10.3390/jtaer16070147
- Lim SK, Oh YE, Park KS. Study on the difference in consumers' perception of the E-commerce utilization factors according to COVID-19: focused on fresh food. e-Bus Stud 2022; 23(1): 75-94. https://doi.org/10.20462/tebs.2022.2.23.1.75
- Roggeveen AL, Sethuraman R. How the COVID-19 pandemic may change the world of retailing. J Retailing 2020; 96(2): 169-171. https://doi.org/10.1016/j.jretai.2020.04.002
- Cruz-Cardenas J, Zabelina E, Guadalupe-Lanas J, Palacio-Fierro A, Ramos-Galarza C. COVID-19, consumer behavior, technology, and society: a literature review and bibliometric analysis. Technol Forecast Soc Change 2021; 173: 121179.
- Usai A, Fiano F, Messeni Petruzzelli A, Paoloni P, Farina Briamonte M, Orlando B. Unveiling the impact of the adoption of digital technologies on firms' innovation performance. J Bus Res 2021; 133: 327-336. https://doi.org/10.1016/j.jbusres.2021.04.035
- Westaby JD. Behavioral reasoning theory: identifying new linkages underlying intentions and behavior. Organ Behav Hum Decis Process 2005; 98(2): 97-120. https://doi.org/10.1016/j.obhdp.2005.07.003
- Taras V, Kirkman BL, Steel P. Examining the impact of culture's consequences: a three-decade, multilevel, meta-analytic review of Hofstede's cultural value dimensions. J Appl Psychol 2010; 95(3): 405-439. https://doi.org/10.1037/a0018938
- Schwartz SH. Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. Adv Exp Soc Psychol 1992; 25: 1-65. https://doi.org/10.1016/S0065-2601(08)60281-6
- Gupta A, Arora N. Understanding determinants and barriers of mobile shopping adoption using behavioral reasoning theory. J Retailing Consum Serv 2017; 36: 1-7. https://doi.org/10.1016/j.jretconser.2016.12.012
- Hansen T. Consumer values, the theory of planned behaviour and online grocery shopping. Int J Consum Stud 2008; 32(2): 128-137. https://doi.org/10.1111/j.1470-6431.2007.00655.x
- Hansen T. Consumer adoption of online grocery buying: a discriminant analysis. Int J Retail Distrib Manag 2005; 33(2): 101-121. https://doi.org/10.1108/09590550510581449
- Rogers EM, Singhal A, Quinlan MM. Diffusion of innovations. In: Stacks DW, Salwen MB, Eichhorn KC, editors. An Integrated Approach to Communication Theory and Research. 2nd ed. New York, NY: Routledge; 2014. p. 432-448.
- Verhoef PC, Langerak F. Possible determinants of consumers' adoption of electronic grocery shopping in the Netherlands. J Retailing Consum Serv 2001; 8(5): 275-285. https://doi.org/10.1016/S0969-6989(00)00033-3
- Cao Q, Niu X. Integrating context-awareness and UTAUT to explain Alipay user adoption. Int J Ind Ergon 2019; 69: 9-13. https://doi.org/10.1016/j.ergon.2018.09.004
- Okazaki S, Mendez F. Perceived ubiquity in mobile services. J Interact Market 2013; 27(2): 98-111. https://doi.org/10.1016/j.intmar.2012.10.001
- Agag G, El-Masry AA. Understanding consumer intention to participate in online travel community and effects on consumer intention to purchase travel online and WOM: an integration of innovation diffusion theory and TAM with trust. Comput Human Behav 2016; 60: 97-111. https://doi.org/10.1016/j.chb.2016.02.038
- Kleijnen M, Lee N, Wetzels M. An exploration of consumer resistance to innovation and its antecedents. J Econ Psychol 2009; 30(3): 344-357. https://doi.org/10.1016/j.joep.2009.02.004
- Claudy MC, Garcia R, O'Driscoll A. Consumer resistance to innovation-a behavioral reasoning perspective. J Acad Mark Sci 2015; 43(4): 528-544. https://doi.org/10.1007/s11747-014-0399-0
- Prabowo H, Hindarwati EN, Yuniarty. Online grocery shopping adoption: a systematic literature review. In: 2020 International Conference on Information Management and Technology (ICIMTech); 2020 Aug 13-14; Bandung, Indonesia. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2020. p. 40-45.
- Dhir A, Koshta N, Goyal RK, Sakashita M, Almotairi M. Behavioral reasoning theory (BRT) perspectives on E-waste recycling and management. J Clean Prod 2021; 280: 124269.
- Claudy MC, Peterson M, O'Driscoll A. Understanding the attitude-behavior gap for renewable energy systems using behavioral reasoning theory. J Macromark 2013; 33(4): 273-287. https://doi.org/10.1177/0276146713481605
- Lian JW, Yen DC. Online shopping drivers and barriers for older adults: age and gender differences. Comput Human Behav 2014; 37: 133-143. https://doi.org/10.1016/j.chb.2014.04.028
- Gupta A, Arora N. Consumer adoption of m-banking: a behavioral reasoning theory perspective. Int J Bank Mark 2017; 35(4): 733-747. https://doi.org/10.1108/IJBM-11-2016-0162
- Nguyen GD, Ha MT. The role of user adaptation and trust in understanding continuance intention towards mobile shopping: an extended expectation-confirmation model. Cogent Bus Manag 2021; 8(1): 1980248.
- Tufail HS, Yaqub RMS, Alsuhaibani AM, Ramzan S, Shahid AU, Refat MS. Consumers' purchase intention of suboptimal food using behavioral reasoning theory: a food waste reduction strategy. Sustainability 2022; 14(14): 8905.
- Pillai R, Sivathanu B. An empirical study on the adoption of M-learning apps among IT/ITeS employees. Interact Technol Smart Educ 2018; 15(3): 182-204. https://doi.org/10.1108/ITSE-01-2018-0002
- Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process 1991; 50(2): 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
- Bosnjak M, Ajzen I, Schmidt P. The theory of planned behavior: selected recent advances and applications. Eur J Psychol 2020; 16(3): 352-356. https://doi.org/10.5964/ejop.v16i3.3107
- Peterson M, Simkins T. Consumers' processing of mindful commercial car sharing. Bus Strategy Environ 2019; 28(3): 457-465. https://doi.org/10.1002/bse.2221
- Ashfaq M, Zhang Q, Ali F, Waheed A, Nawaz S. You plant a virtual tree, we'll plant a real tree: understanding users' adoption of the Ant Forest mobile gaming application from a behavioral reasoning theory perspective. J Clean Prod 2021; 310: 127394.
- Bhattacherjee A. Understanding information systems continuance: an expectation-confirmation model. Manage Inf Syst Q 2001; 25(3): 351.
- Su M, Fang M, Kim J, Park KS. Sustainable marketing innovation and consumption: evidence from cold chain food online retail. J Clean Prod 2022; 340: 130806.
- An D, Ji S, Jan IU. Investigating the determinants and barriers of purchase intention of innovative new products. Sustainability 2021; 13(2): 740.
- Hair JF, Risher JJ, Sarstedt M, Ringle CM. When to use and how to report the results of PLS-SEM. Eur Bus Rev 2019; 31(1): 2-24. https://doi.org/10.1108/EBR-11-2018-0203
- Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J Acad Mark Sci 2015; 43(1): 115-135. https://doi.org/10.1007/s11747-014-0403-8
- Nascimento B, Oliveira T, Tam C. Wearable technology: what explains continuance intention in smartwatches? J Retailing Consum Serv 2018; 43: 157-169. https://doi.org/10.1016/j.jretconser.2018.03.017
- Austin JT, Vancouver JB. Goal constructs in psychology: structure, process, and content. Psychol Bull 1996; 120(3): 338-375. https://doi.org/10.1037/0033-2909.120.3.338
- Zheng Q, Chen J, Zhang R, Wang HH. What factors affect Chinese consumers' online grocery shopping? Product attributes, e-vendor characteristics and consumer perceptions. China Agric Econ Rev 2020; 12(2): 193-213. https://doi.org/10.1108/CAER-09-2018-0201
- Wood W. Attitude change: persuasion and social influence. Annu Rev Psychol 2000; 51(1): 539-570. https://doi.org/10.1146/annurev.psych.51.1.539
- Bavel JJ, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav 2020; 4(5): 460-471. https://doi.org/10.1038/s41562-020-0884-z
- Lim H, Widdows R, Hooker NH. Web content analysis of e-grocery retailers: a longitudinal study. Int J Retail Distrib Manag 2009; 37(10): 839-851. https://doi.org/10.1108/09590550910988020
- Kim Y, Kim B. Selection attributes of innovative digital platform-based subscription services: a case of South Korea. J Open Innov Technol Mark Complex 2020; 6(3): 70.