DOI QR코드

DOI QR Code

충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model

  • 양지수 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 유경근 (국립한국해양대학교 에너지자원공학과) ;
  • 서주범 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 한성수 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Jisu Yang (Mineral processing & metallurgy research center, Resource Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Kyoungkeun Yoo (Department of Energy & Resources Engineering, Korea Maritime and Ocean University) ;
  • Joobeom Seo (Mineral processing & metallurgy research center, Resource Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Seongsoo Han (Mineral processing & metallurgy research center, Resource Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2024.05.21
  • 심사 : 2024.06.10
  • 발행 : 2024.06.30

초록

몰리브데나이트는 몰리브덴의 주요 광물자원으로 고유의 소수성 표면으로 인해 부유선별을 통해 회수된다. 한편, 채광되는 몰리브데나이트의 결정크기 및 품위가 낮아지고 있다. 이로 인해, 단체분리에 요구되는 광물 크기가 작아짐으로써, 부유선별에 투입되는 원광 크기 또한 미립화되고 있다. 미립자는 기포와의 충돌확률이 낮아, 부유선별할 때 효율 감소를 유발시킨다. 이에 따라, 몰리브덴 확보를 위해서는 미립 몰리브데나이트에 대한 부유선별 연구가 필요한 실정이다. 본 연구에서는 5-30 ㎛의 미립 몰리브데나이트의 부유선별 효율을 향상시킬 수 있는 방안을 제안하였다. 기포크기 축소와 입자응집을 통한 효율 증진으로 접근하였다. 기포-입자 충돌확률을 시뮬레이션과 부유선별 실험을 통해, 미립자의 부유선별 효율이 향상될 수 있는 기포크기 및 입자응집체 크기에 대한 범위를 정량적으로 결정하였다. 결과적으로 본 연구에서 제공한 미립 몰리브덴광 부유선별 조건은 향후 몰리브덴 선광 플랜트의 부유선별 공정을 향상시키는 데 활용될 예정이다.

Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

키워드

과제정보

본 연구는 한국지질자원연구원 주요사업인 '국내 부존바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 24-3212)과 'K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(GP2023-004, 24-3215)' 과제, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 일환으로 수행되었습니다(No. 20227A10100030).

참고문헌

  1. Kelebek, S., Yoruk, S., Smith, G. W., 2001 : Wetting behavior of molybdenite and talc in lignosulphonate/MIBC solutions and their separation by flotation, Separation Science and Technology, 36(2), pp.145-157. https://doi.org/10.1081/SS-100001072
  2. Shields, J. A., 2013 : Applications of molybdenum metal and its alloys, pp.11-39, International Molybdenum Association.
  3. Gacitua, M., Boutaleb, Y., Cattin, L., et al., 2010 : Electrochemical preparation of MoO3 buffer layer deposited onto the anode in organic solar cells, Physica Status Solidi A, 207(8), pp.1905-1911. https://doi.org/10.1002/pssa.200925602
  4. Ministry of Trade, Industry and Energy. Coal and Mineral Resources Division., Strategy to secure critical minerals, https://www.motie.go.kr/kor/article/ATCL3f49a5a8c/166862/view, February, 2023.
  5. Castro, S., Lopez-Valdivieso, A., Laskowski, J. S., 2016 : Review of the flotation of molybdenite, Part I: Surface properties and floatability, International Journal of Mineral Processing, 148, pp.48-58. https://doi.org/10.1016/j.minpro.2016.01.003
  6. Song, S., Zhang, X., Yang, B., et al., 2012 : Flotation of molybdenite fines as hydrophobic agglomerates, Separation and Purification Technology, 98, pp.451-455. https://doi.org/10.1016/j.seppur.2012.06.016
  7. Choi, S. G., Koo, M. H., Kang, H. S., et al., 2011 : Major molybdenum mineralization and igneous activity, south Korea, Economic and Environmental Geology, 44(2), pp. 109-122. https://doi.org/10.9719/EEG.2011.44.2.109
  8. Tao, D., Luttrell, G. H., Yoon, R. H., 2000 : A parametric study of froth stability and its effect on column flotation of fine particles, International Journal of Mineral Processing, 59(1), pp.25-43. https://doi.org/10.1016/S0301-7516(99)00033-2
  9. Tao, D., 2005 : Role of bubble size in flotation of coarse and fine particles-a review, Separation Science and Technology, 39(4), pp.741-760. https://doi.org/10.1081/SS-120028444
  10. Yoon, R. H., Luttrell, G. H., 1986 : The effect of bubble size on fine coal flotation, Coal Preparation, 2(3), pp.179-192. https://doi.org/10.1080/07349348508905163
  11. Yi, H., Zhao, Y., Rao, F., et al., 2018 : Hydrophobic agglomeration of talc fines in aqueous suspensions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, pp.327-332. https://doi.org/10.1016/j.colsurfa.2017.11.017
  12. Duan, J., Fornasiero, D., Ralston, J., 2003 : Calculation of the flotation rate constant of chalcopyrite particles in an ore, International Journal of Mineral Processing, 72(1-4), pp.227-237. https://doi.org/10.1016/S0301-7516(03)00101-7
  13. Wills, B. A., Finch, J., 2015 : Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery, pp.297-301, Elsevier, Amsterdam.
  14. Bu, X., Xie, G., Peng, Y., et al., 2017 : Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery, Physicochemical Problems of mineral processing, 53(1), pp.342-365.
  15. Song, S., Valdivieso, A. L., 1998 : Hydrophobic flocculation flotation for beneficiating fine coal and minerals, pp. 1195-1212, Taylor & Francis, Oxfordshire.
  16. Li, S., Ma, X., Wang, J., et al., 2020 : Effec t of polyethylene oxide on flotation of molybdenite fines, Minerals Engineering, 146, 106146.
  17. Maoming, F., Daniel, T., Honaker, R., et al., 2010 : Nanobubble generation and its applications in froth flotation (part II): fundamental study and theoretical analysis, Mining Science and Technology, 20(2), pp.159-177. https://doi.org/10.1016/S1674-5264(09)60179-4
  18. Grau, R. A., Laskowski, J. S., Heiskanen, K., 2005 : Effect of frothers on bubble size, International Journal of Mineral Processing, 76(4), pp.225-233. https://doi.org/10.1016/j.minpro.2005.01.004
  19. Cho, Y. S., Laskowski, J. S., 2002 : Effect of flotation frothers on bubble size and foam stability, International Journal of Mineral Processing, 64(2-3), pp.69-80. https://doi.org/10.1016/S0301-7516(01)00064-3
  20. Cheng, K., Wu, X., Tang, H., et al., 2022 : The flotation of fine hematite by selective flocculation using sodium polyacrylate, Minerals Engineering, 176, 107273.
  21. Uysal, T., Guven, O., Ozdemir, O., et al., 2021 : Contribution of particle morphology on flotation and aggregation of sphalerite particles, Minerals Engineering, 165, 106860.