DOI QR코드

DOI QR Code

탈질 폐촉매 침출액으로부터 Alamine 336에 의한 바나듐과 텅스텐의 분리

The Separation of Vanadium and Tungsten from Spent Selective Catalytic Reduction Catalyst Leach Solution by Alamine 336

  • 강성수 (국립한국해양대학교 에너지자원공학과) ;
  • 문경혜 ((주)에코프로에이치엔 무기소재개발팀) ;
  • 최인혁 ((주)에스쓰리알 R&D센터) ;
  • 백다경 (국립한국해양대학교 에너지자원공학과) ;
  • 유경근 (국립한국해양대학교 에너지자원공학과)
  • Seongsu Kang (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University) ;
  • Gyeonghye Moon (Development of Inorganic Material Team, EcoPro HN Co.) ;
  • In-Hyeok Choi (R&D Center, S3R Co. Ltd.) ;
  • Dakyeong Baek (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University) ;
  • Kyoungkeun Yoo (Department of Energy and Resources Engineering, National Korea Maritime and Ocean University)
  • 투고 : 2024.05.16
  • 심사 : 2024.06.07
  • 발행 : 2024.06.30

초록

본 연구에서는 탈질 폐촉매 침출액으로부터 바나듐 환원과 Alamine 336을 이용한 용매추출에 의해 바나듐과 텅스텐의 분리 가능성을 조사하고 최적 공정 조건을 도출하기 위한 실험을 수행하였다. 바나듐과 텅스텐은 화학적 거동이 비슷하여 분리가 어렵지만 산성용액에서 일부 존재하는 음이온 상태의 5가 바나듐을 양이온 상태의 4가 바나듐으로 환원시켜 음이온 교환 추출제에 의한 추출을 억제할 경우 텅스텐을 선택적으로 추출할 수 있다. 실험 결과, 환원제로 NaHSO3가 가장 적합하였으며 환원제 첨가량, 반응 시간, 온도가 증가할수록 바나듐의 추출 효율이 감소하여 분리 효율이 증가하였다. 최적 환원 조건인 NaHSO3 1.5당량, 60분, 60℃ 조건에서 환원할 경우, 바나듐 추출 효율 5.8%, 텅스텐 추출 효율 99%, 바나듐과 텅스텐의 분리 계수 7,564로 두 성분이 효과적으로 분리되었다.

In this study, we investigated the separability of vanadium and tungsten from spent SCR (Selective Catalytic Reduction) catalyst leach solution by reduction of vanadium and solvent extraction using Alamine 336 and conducted experiments to optimize process conditions. It is difficult to separate vanadium and tungsten due to their similar chemical behavior, but tungsten can be selectively extracted from acidic solution when vanadium extraction is prevented by reducing anionic pentavalent vanadium to cationic tetravalent vanadium. The results showed that NaHSO3 was most suitable as a reducing agent, and the extraction efficiency of vanadium decreased and the separation efficiency increased as the amount of reducing agent added, reaction time, and temperature increased. When reducing NaHSO3 1.5 eq, 60 min, and 60℃, which are optimal conditions of reduction, vanadium and tungsten were effectively separated with vanadium extraction efficiency of 5.8%, tungsten extraction efficiency of 99%, and separation factor of vanadium and tungsten of 7,564.

키워드

과제정보

이 논문은 산업통상자원부의 재원으로 해외자원개발협회의 지원(과제명: 자원개발 산합협력 컨소시엄-스마트 마이닝 전문인력 양성, 과제번호:2021060003)과 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구입니다(2022R1A6C101B738). 지원해주신 관계자분들께 감사드립니다.

참고문헌

  1. Ministry of Environment, https://www.me.go.kr/home/web/board/read.do?menuId=&boardId=878800&boardMasterId=1, June 7, 2024. 
  2. Kim, K., Bae, K., Choi, B., et al., 2007 : Denitrification Technology (SCR) Trend and Nanocatalyst, KIC News, 10(4), pp.45-59. 
  3. Korea Institute of Geoscience and Mineral Resource, 2019 : Development of commercial system and export package for recovering useful resources from denitrification/desulfurization waste catalyst, pp.7-8, Ministry of Environment, Korea. 
  4. Argyle, M., Bartholomew, C., 2015 : Heterogeneous Catalyst Deactivation and Regeneration: A Review, Catalysts, 5(1), pp.145-269.  https://doi.org/10.3390/catal5010145
  5. Moon, G., Kim, J., Lee, J., et al., 2019 : Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium, Hydrometallurgy, 189, pp.105-132.  https://doi.org/10.1016/j.hydromet.2019.105132
  6. Kim, H., Lee, J., Kim, J., 2012 : Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method, Resources Recycling, 21(6), pp.65-73.  https://doi.org/10.7844/kirr.2012.21.6.65
  7. Oh, Y., 2022. KR. 10-2445476. 
  8. Nguyen, T., Lee, M., 2014 : Separation of Vanadium and Tungsten from Sodium Molybdate Solution by Solvent Extraction, Industrial & Engineering Chemistry Research, 53(20), pp.8608-8614.  https://doi.org/10.1021/ie500486y
  9. Moon, K., Choi, I., Park, K., et al., 2017 : Separation of Tungsten and Vanadium from Alkaline Solution with adding CaCl2, Resources Recycling, 26(4), pp.42-49. 
  10. Luo, L., Miyazaki, T., Shibayama, A., et al., 2003 : A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap, Minerals Engineering, 16(7), pp.665-670.  https://doi.org/10.1016/S0892-6875(03)00103-1
  11. Jeon, J., Kim, Y., Lee, J., et al., 2014 : Adsorption/ Desorption of Tungsten from Ammonium Tungstate Pentahydrate using Anion Exchange Resins, Journal of the Korean Society of Mineral and Energy Resources Engineers, 51(3), pp.339-348.  https://doi.org/10.12972/ksmer.2014.51.3.339
  12. Heo, S., Jeon, J., Kim, R., et al., 2021 : Separation of Vanadium and Tungsten from Spent SCR DeNOX Catalyst by Ion-exchange Column, Resources Recycling, 30(4), pp.54-63.  https://doi.org/10.7844/kirr.2021.30.4.54
  13. Wu, W., Tsai, T., Shen, Y., 2016 : Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange, Minerals, 6(4), pp.107. 
  14. Wang, L., Zhang, G., Guan, W., et al., 2018 : Complete removal of trace vanadium from ammonium tungstate solutions by solvent extraction, Hydrometallurgy, 179, pp.268-273.  https://doi.org/10.1016/j.hydromet.2018.06.016
  15. Kanamori, K., Tsuge, K., 2012 : Vandium, Michibata, H. pp.3-31, Springer Dordrecht, Japan. 
  16. Ahn, J., Ahn, J., 2008 : The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution, Korean Journal of Metals and Materials, 46(12), pp.823-830.