DOI QR코드

DOI QR Code

Secretagogin deficiency causes abnormal extracellular trap formation in microglia

  • Yu Gyung Kim (Department of Pharmacology, School of Dentistry, Kyungpook National University) ;
  • Do-Yeon Kim (Department of Pharmacology, School of Dentistry, Kyungpook National University)
  • 투고 : 2024.05.23
  • 심사 : 2024.06.12
  • 발행 : 2024.06.30

초록

Extracellular traps (ETs), primarily composed of DNA and antibacterial peptides, are mainly secreted by neutrophils to inhibit pathogen spread and eliminate microorganisms. Recent reports suggest that microglia can also secrete ETs, and these microglial ETs are associated with various neurological conditions, including nerve injury, tumor microenvironment, and ischemic stroke. However, the components and functions of microglial ETs remain underexplored. Secretagogin (Scgn), a calcium-sensor protein, plays a crucial role in the release of peptide hormones, such as insulin, in endocrine cells; however, its function in immune cells, including microglia, is not well understood. Our study demonstrated that Scgn deficiency can lead to the formation of abnormal ETs. We hypothesized that this may involve the c-Jun N-terminal kinase-myeloperoxidase pathway and autophagy.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1006181).

참고문헌

  1. Mhatre SD, Tsai CA, Rubin AJ, James ML, Andreasson KI. Microglial malfunction: the third rail in the development of Alzheimer's disease. Trends Neurosci 2015;38:621-36. doi: 10.1016/j.tins.2015.08.006 
  2. Janda E, Boi L, Carta AR. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson's disease? Front Mol Neurosci 2018;11:144. doi: 10.3389/fnmol.2018.00144 
  3. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023;8:359. doi: 10.1038/s41392-023-01588-0 
  4. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018;18:134-47. doi: 10.1038/nri.2017.105 
  5. Wang C, Wang Y, Shi X, Tang X, Cheng W, Wang X, An Y, Li S, Xu H, Li Y, Luan W, Wang X, Chen Z, Liu M, Yu L. The TRAPs from microglial vesicles protect against Listeria infection in the CNS. Front Cell Neurosci 2019;13:199. doi: 10.3389/fncel.2019.00199 
  6. Sharma AK, Khandelwal R, Sharma Y. Veiled potential of secretagogin in diabetes: correlation or coincidence? Trends Endocrinol Metab 2019;30:234-43. doi: 10.1016/j.tem.2019.01.007 
  7. Gartner W, Lang W, Leutmetzer F, Domanovits H, Waldhausl W, Wagner L. Cerebral expression and serum detectability of secretagogin, a recently cloned EF-hand Ca(2+)-binding protein. Cereb Cortex 2001;11:1161-9. doi: 10.1093/cercor/11.12.1161 
  8. Tu Y, Qin J, Zhang QM, Tang TS, Wang L, Yao J. Secretagogin regulates asynchronous and spontaneous glutamate release in hippocampal neurons through interaction with Doc2α. Life Med 2023;2:lnad041. doi: 10.1093/lifemedi/lnad041 
  9. Liu Z, Tan S, Zhou L, Chen L, Liu M, Wang W, Tang Y, Yang Q, Chi S, Jiang P, Zhang Y, Cui Y, Qin J, Hu X, Li S, Liu Q, Chen L, Li S, Burstein E, Li W, Zhang X, Mo X, Jia D. SCGN deficiency is a risk factor for autism spectrum disorder. Signal Transduct Target Ther 2023;8:3. doi: 10.1038/s41392-022-01225-2 
  10. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 2014;11:783-4. doi: 10.1038/nmeth.3047 
  11. Mortberg MA, Gentile JE, Nadaf NM, Vanderburg C, Simmons S, Dubinsky D, Slamin A, Maldonado S, Petersen CL, Jones N, Kordasiewicz HB, Zhao HT, Vallabh SM, Minikel EV. A single-cell map of antisense oligonucleotide activity in the brain. Nucleic Acids Res 2023;51:7109-24. doi: 10.1093/nar/gkad371 
  12. Zhu K, Bendl J, Rahman S, Vicari JM, Coleman C, Clarence T, Latouche O, Tsankova NM, Li A, Brennand KJ, Lee D, Yuan GC, Fullard JF, Roussos P. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci Adv 2023;9:eadg3754. doi: 10.1126/sciadv.adg3754 
  13. Al-Khafaji AB, Tohme S, Yazdani HO, Miller D, Huang H, Tsung A. Superoxide induces neutrophil extracellular trap formation in a TLR-4 and NOX-dependent mechanism. Mol Med 2016;22:621-31. doi: 10.2119/molmed.2016.00054 
  14. Wang Y, Wang W, Wang N, Tall AR, Tabas I. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler Thromb Vasc Biol 2017;37:e99-107. doi: 10.1161/ATVBAHA.117.309580 
  15. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 2011;117:953-9. doi: 10.1182/blood-2010-06-290171 
  16. Gray E, Thomas TL, Betmouni S, Scolding N, Love S. Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 2008;18:86-95. doi: 10.1111/j.1750-3639.2007.00110.x 
  17. Lefkowitz DL, Lefkowitz SS. Microglia and myeloperoxidase: a deadly partnership in neurodegenerative disease. Free Radic Biol Med 2008;45:726-31. doi: 10.1016/j.freeradbiomed.2008.05.021 
  18. Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 2014;37:1401-12. doi: 10.1007/s10753-014-9864-7 
  19. Romero A, Novoa B, Figueras A. Extracellular traps (ETosis) can be activated through NADPH-dependent and -independent mechanisms in bivalve mollusks. Dev Comp Immunol 2020;106:103585. doi: 10.1016/j.dci.2019.103585 
  20. Garcia-Nogales P, Almeida A, Fernandez E, Medina JM, Bolanos JP. Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultured rat astrocytes. J Neurochem 1999;72:1750-8. doi: 10.1046/j.1471-4159.1999.721750.x 
  21. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245-313. doi: 10.1152/physrev.00044.2005 
  22. Lai JB, Qiu CF, Chen CX, Chen MY, Chen J, Guan XD, Ouyang B. Inhibition of c-Jun N-terminal kinase signaling pathway alleviates lipopolysaccharide-induced acute respiratory distress syndrome in rats. Chin Med J (Engl) 2016;129:1719-24. doi: 10.4103/0366-6999.185867 
  23. Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, Palaniyar N. JNK activation turns on LPS- and Gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis. Sci Rep 2017;7:3409. doi: 10.1038/s41598-017-03257-z 
  24. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 2011;21:290-304. doi: 10.1038/cr.2010.150 
  25. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532-5. doi: 10.1126/science.1092385 
  26. Michel-Flutot P, Bourcier CH, Emam L, Gasser A, Glatigny S, Vinit S, Mansart A. Extracellular traps formation following cervical spinal cord injury. Eur J Neurosci 2023;57:692-704. doi: 10.1111/ejn.15902 
  27. Khandelwal R, Sharma AK, Biswa BB, Sharma Y. Extracellular secretagogin is internalized into the cells through endocytosis. FEBS J 2022;289:3183-204. doi: 10.1111/febs.16338 
  28. Maj M, Wagner L, Tretter V. 20 Years of secretagogin: exocytosis and beyond. Front Mol Neurosci 2019;12:29. doi: 10.3389/fnmol.2019.00029 
  29. Michiba A, Shiogama K, Tsukamoto T, Hirayama M, Yamada S, Abe M. Morphologic analysis of M2 macrophage in glioblastoma: involvement of macrophage extracellular traps (METs). Acta Histochem Cytochem 2022;55:111-8. doi: 10.1267/ahc.22-00018