DOI QR코드

DOI QR Code

Mechanisms underlying diabetes-induced bone loss

  • Ju Han Song (Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University) ;
  • Xianyu Piao (Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University) ;
  • Jeong-Tae Koh (Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University)
  • 투고 : 2024.06.11
  • 심사 : 2024.06.14
  • 발행 : 2024.06.30

초록

Diabetes, a chronic hyperglycemic condition, is caused by insufficient insulin secretion or functional impairment. Long-term inadequate regulation of blood glucose levels or hyperglycemia can lead to various complications, such as retinopathy, nephropathy, and cardiovascular disease. Recent studies have explored the molecular mechanisms linking diabetes to bone loss and an increased susceptibility to fractures. This study reviews the characteristics and molecular mechanisms of diabetes-induced bone disease. Depending on the type of diabetes, changes in bone tissue vary. The molecular mechanisms responsible for bone loss in diabetes include the accumulation of advanced glycation end products (AGEs), upregulation of inflammatory cytokines, induction of oxidative stress, and deficiencies in insulin/IGF-1. In diabetes, alveolar bone loss results from complex interactions involving oral bacterial infections, host responses, and hyperglycemic stress in periodontal tissues. Therapeutic strategies for diabetes-induced bone loss may include blocking the AGEs signaling pathway, decreasing inflammatory cytokine activity, inhibiting reactive oxygen species generation and activity, and controlling glucose levels; however, further research is warranted.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2019R1A5A2027521), the Korean Fund for Regenerative Medicine (KFRM) grant (the Ministry of Science and ICT, the Ministry of Health & Welfare, No. 22A0104L1), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01061824).

참고문헌

  1. American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022;45(Suppl 1):S17-38. doi: 10.2337/dc22-S002
  2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119. doi: 10.1016/j.diabres.2021.109119
  3. Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev 2017;13:3-10. doi: 10.2174/1573399812666151016101622
  4. Tomasiuk JM, Nowakowska-Plaza A, Wislowska M, Gluszko P. Osteoporosis and diabetes - possible links and diagnostic difficulties. Reumatologia 2023;61:294-304. doi: 10.5114/reum/170048
  5. Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary osteoporosis. Endocr Rev 2022;43:240-313. doi: 10.1210/endrev/bnab028
  6. Wu B, Fu Z, Wang X, Zhou P, Yang Q, Jiang Y, Zhu D. A narrative review of diabetic bone disease: characteristics, pathogenesis, and treatment. Front Endocrinol (Lausanne) 2022;13:1052592. doi: 10.3389/fendo.2022.1052592
  7. Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 2015;7:63-72. doi: 10.1038/ijos.2015.2
  8. Chen SC, Shepherd S, McMillan M, McNeilly J, Foster J, Wong SC, Robertson KJ, Ahmed SF. Skeletal fragility and its clinical determinants in children with type 1 diabetes. J Clin Endocrinol Metab 2019;104:3585-94. doi: 10.1210/jc.2019-00084
  9. Halper-Stromberg E, Gallo T, Champakanath A, Taki I, Rewers M, Snell-Bergeon J, Frohnert BI, Shah VN. Bone mineral density across the lifespan in patients with type 1 diabetes. J Clin Endocrinol Metab 2020;105:746-53. doi: 10.1210/clinem/dgz153
  10. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X, Rivadeneira F. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 2012;27:319-32. doi: 10.1007/s10654-012-9674-x
  11. Schacter GI, Leslie WD. Diabetes and osteoporosis: part I, epidemiology and pathophysiology. Endocrinol Metab Clin North Am 2021;50:275-85. doi: 10.1016/j.ecl.2021.03.005
  12. Sewing L, Potasso L, Baumann S, Schenk D, Gazozcu F, Lippuner K, Kraenzlin M, Zysset P, Meier C. Bone microarchitecture and strength in long-standing type 1 diabetes. J Bone Miner Res 2022;37:837-47. doi: 10.1002/jbmr.4517
  13. Martinez-Montoro JI, Garcia-Fontana B, Garcia-Fontana C, Munoz-Torres M. Evaluation of quality and bone microstructure alterations in patients with type 2 diabetes: a narrative review. J Clin Med 2022;11:2206. doi: 10.3390/jcm11082206
  14. Sihota P, Yadav RN, Dhaliwal R, Bose JC, Dhiman V, Neradi D, Karn S, Sharma S, Aggarwal S, Goni VG, Mehandia V, Vashishth D, Bhadada SK, Kumar N. Investigation of mechanical, material, and compositional determinants of human trabecular bone quality in type 2 diabetes. J Clin Endocrinol Metab 2021;106:e2271-89. doi: 10.1210/clinem/dgab027
  15. Thong EP, Herath M, Weber DR, Ranasinha S, Ebeling PR, Milat F, Teede H. Fracture risk in young and middle-aged adults with type 1 diabetes mellitus: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 2018;89:314-23. doi: 10.1111/cen.13761
  16. Koromani F, Oei L, Shevroja E, Trajanoska K, Schoufour J, Muka T, Franco OH, Ikram MA, Zillikens MC, Uitterlinden AG, Krestin GP, Anastassiades T, Josse R, Kaiser SM, Goltzman D, Lentle BC, Prior JC, Leslie WD, McCloskey E, Lamy O, Hans D, Oei EH, Rivadeneira F. Vertebral fractures in individuals with type 2 diabetes: more than skeletal complications alone. Diabetes Care 2020;43:137-44. doi: 10.2337/dc19-0925
  17. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44:775-82. doi: 10.2337/diab.44.7.775
  18. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT. Peripheral leptin regulates bone formation. J Bone Miner Res 2013;28:22-34. doi: 10.1002/jbmr.1734
  19. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018;98:2133-223. doi:10.1152/physrev.00063.2017
  20. Pramojanee SN, Phimphilai M, Chattipakorn N, Chattipakorn SC. Possible roles of insulin signaling in osteoblasts. Endocr Res 2014;39:144-51. doi: 10.3109/07435800.2013.879168
  21. Ma X, Su P, Yin C, Lin X, Wang X, Gao Y, Patil S, War AR, Qadir A, Tian Y, Qian A. The roles of FoxO transcription factors in regulation of bone cells function. Int J Mol Sci 2020;21:692. doi: 10.3390/ijms21030692
  22. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 2010;142:309-19. doi: 10.1016/j.cell.2010.06.002
  23. Gilbert MP, Pratley RE. The impact of diabetes and diabetes medications on bone health. Endocr Rev 2015;36:194-213. doi: 10.1210/er.2012-1042
  24. Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, Deng L. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 2012;30:297-302. doi:10.1002/cbf.2801
  25. Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z, Li A, Chang W, Bikle DD. Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J Bone Miner Res 2015;30:1572-84. doi: 10.1002/jbmr.2510
  26. Raisingani M, Preneet B, Kohn B, Yakar S. Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis. Growth Horm IGF Res 2017;34:13-21. doi: 10.1016/j.ghir.2017.04.003
  27. Lv F, Cai X, Zhang R, Zhou L, Zhou X, Han X, Ji L. Sex-specific associations of serum insulin-like growth factor-1 with bone density and risk of fractures in Chinese patients with type 2 diabetes. Osteoporos Int 2021;32:1165-73. doi: 10.1007/s00198-020-05790-6
  28. Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocr Soc 2019;3:1799-818. doi: 10.1210/js.2019-00160
  29. Kerkeni M, Saidi A, Bouzidi H, Letaief A, Ben Yahia S, Hammami M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab Vasc Dis Res 2013;10:239-45. doi: 10.1177/1479164112460253
  30. Oren TW, Botolin S, Williams A, Bucknell A, King KB. Arthroplasty in veterans: analysis of cartilage, bone, serum, and synovial fluid reveals differences and similarities in osteoarthritis with and without comorbid diabetes. J Rehabil Res Dev 2011;48:1195-210. doi: 10.1682/jrrd.2010.09.0186
  31. Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab 2016;101:2502-10. doi: 10.1210/jc.2016-1437
  32. Karim L, Bouxsein ML. Effect of type 2 diabetes-related nonenzymatic glycation on bone biomechanical properties. Bone 2016;82:21-7. doi: 10.1016/j.bone.2015.07.028
  33. Franke S, Siggelkow H, Wolf G, Hein G. Advanced glycation endproducts influence the mRNA expression of RAGE, RANKL and various osteoblastic genes in human osteoblasts. Arch Physiol Biochem 2007;113:154-61. doi: 10.1080/13813450701602523
  34. Okazaki K, Yamaguchi T, Tanaka K, Notsu M, Ogawa N, Yano S, Sugimoto T. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int 2012;91:286-96. doi: 10.1007/s00223-012-9641-2
  35. Notsu M, Yamaguchi T, Okazaki K, Tanaka K, Ogawa N, Kanazawa I, Sugimoto T. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology 2014;155:2402-10. doi: 10.1210/en.2013-1818
  36. Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem 2023;129:95-107. doi: 10.1080/13813455.2020.1797106
  37. Yang S, He Z, Wu T, Wang S, Dai H. Glycobiology in osteoclast differentiation and function. Bone Res 2023;11:55. doi: 10.1038/s41413-023-00293-6
  38. Miyata T, Kawai R, Taketomi S, Sprague SM. Possible involvement of advanced glycation end-products in bone resorption. Nephrol Dial Transplant 1996;11 Suppl 5:54-7. doi: 10.1093/ndt/11.supp5.54
  39. Park SY, Choi KH, Jun JE, Chung HY. Effects of advanced glycation end products on differentiation and function of osteoblasts and osteoclasts. J Korean Med Sci 2021;36:e239. doi: 10.3346/jkms.2021.36.e239
  40. Tanaka K, Yamagata K, Kubo S, Nakayamada S, Sakata K, Matsui T, Yamagishi SI, Okada Y, Tanaka Y. Glycolaldehydemodified advanced glycation end-products inhibit differentiation of human monocytes into osteoclasts via upregulation of IL-10. Bone 2019;128:115034. doi: 10.1016/j.bone.2019.115034
  41. Palermo A, D'Onofrio L, Buzzetti R, Manfrini S, Napoli N. Pathophysiology of bone fragility in patients with diabetes. Calcif Tissue Int 2017;100:122-32. doi: 10.1007/s00223-016-0226-3
  42. Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023;14:1222129. doi: 10.3389/fimmu.2023.1222129
  43. An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023;22:237. doi: 10.1186/s12933-023-01965-7
  44. Marques-Carvalho A, Kim HN, Almeida M. The role of reactive oxygen species in bone cell physiology and pathophysiology. Bone Rep 2023;19:101664. doi: 10.1016/j.bonr.2023.101664
  45. Iantomasi T, Romagnoli C, Palmini G, Donati S, Falsetti I, Miglietta F, Aurilia C, Marini F, Giusti F, Brandi ML. Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci 2023;24:3772. doi: 10.3390/ijms24043772
  46. Cheon YH, Lee CH, Jeong DH, Kwak SC, Kim S, Lee MS, Kim JY. Dual oxidase maturation factor 1 positively regulates RANKL-induced osteoclastogenesis via activating reactive oxygen species and TRAF6-mediated signaling. Int J Mol Sci 2020;21:6416. doi: 10.3390/ijms21176416
  47. Xuan Y, Wang J, Zhang X, Wang J, Li J, Liu Q, Lu G, Xiao M, Gao T, Guo Y, Cao C, Chen O, Wang K, Tang Y, Gu J. Resveratrol attenuates high glucose-induced osteoblast dysfunction via AKT/GSK3β/FYN-mediated NRF2 activation. Front Pharmacol 2022;13:862618. doi: 10.3389/fphar.2022.862618
  48. Lamster IB. Diabetes mellitus and oral health: an interprofessional approach. John Wiley & Sons; 2014.
  49. Mealey BL, Oates TW; American Academy of Periodontology. Diabetes mellitus and periodontal diseases. J Periodontol 2006;77:1289-303. doi: 10.1902/jop.2006.050459
  50. Pacios S, Andriankaja O, Kang J, Alnammary M, Bae J, de Brito Bezerra B, Schreiner H, Fine DH, Graves DT. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol 2013;183:1928-35. doi: 10.1016/j.ajpath.2013.08.017