DOI QR코드

DOI QR Code

폭발 하중을 받는 구조물의 소성 범위를 고려한 비선형 단자유도 시스템의 수정계수 개발

Development of Modification Coefficient for Nonlinear Single Degree of Freedom System Considering Plasticity Range for Structures Subjected to Blast Loads

  • 임태훈 (건국대학교 건축학과) ;
  • 이승훈 (건국대학교 건축학과) ;
  • 김한수 (건국대학교 건축학과)
  • Tae-Hun Lim (Department of Architecture, Konkuk University) ;
  • Seung-Hoon Lee (Department of Architecture, Konkuk University) ;
  • Han-Soo Kim (Department of Architecture, Konkuk University)
  • 투고 : 2024.05.08
  • 심사 : 2024.05.29
  • 발행 : 2024.06.30

초록

본 논문에서는 충격파 형태의 폭발 하중을 받는 부재의 소성 범위를 고려한 SDOF 해석의 수정계수를 개발하였다. SDOF 해석의 수정계수는 MDOF 해석 결과 값을 비교하여 도출하였다. SDOF 해석에 영향을 미치는 매개변수로 부재의 경계조건, 폭발 하중 지속시간과 고유주기 비를 선정하였다. 수정계수는 탄성 하중-질량 변환 계수를 기준으로 산정하였다. 수정계수 곡선은 상한, 하한 매개변수 경계 사이에 있도록 타원 방정식을 이용하여 도출하였다. 서로 다른 단면과 경계조건을 가지는 예제에 수정계수를 적용한 결과 SDOF 해석의 오차율이 15%에서 3%로 감소하였다. 본 연구의 결과는 수정계수를 적용하여 SDOF 해석의 정확도를 높임에 따라 폭발 해석에 널리 활용될 수 있다.

In this paper, a modification coefficient for equivalent single degree of freedom (SDOF), considering the plasticity range of the member subjected to shock wave type of blast load, was developed. The modification coefficient for the equivalent SDOF was determined through comparison with the analysis of a multi-degree of freedom (MDOF) system. The parameters influencing the equivalent SDOF system analysis were chosen as the boundary conditions of the member and the ratio of the duration of blast load to the natural period of the member. The modification coefficient was calculated based on the elastic load-mass transformation factor. The modification coefficient curve was derived using an elliptical equation to ensure it exists between the upper and lower parameter bounds. Using the modification coefficient on examples with varying cross sections and boundary conditions reduced the SDOF analysis error rate from 15% to 3%. This study shows that using the modification coefficient significantly improves the accuracy of SDOF analysis. The modification coefficient proposed in this study can be used for blast analysis.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA163162).

참고문헌

  1. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineer, Virginia, p.300.
  2. ASCE (2021) Structural Design for Physical Security, American Society of Civil Engineer, Viginia, p.453.
  3. Astarlioglu, S., Krauthammer, T., Morency, D., Tran, T.P. (2013) Behavior of Reinforced Concrete Columns under Combined Effects of Axial and Blast-Induced Transverse Loads, Eng. Struct., 55, pp.26~34.
  4. Biggs, J.M. (1964) Introduction to Structural Dynamics, McGraw-Hill, New York, p.341.
  5. Chopra, A.K. (2014) Dynamics of Structures, 4th edition, Prentice Hall, NJ, p.944.
  6. Cui, L., Zhang X., Hao, H. (2021) Improved Analysis Method for Structural Members Subjected to Blast Loads Considering Strain Hardening and Softening Effects, Adv. Struct. Eng., 24(12), pp.2622~2636.
  7. Dusenberry, D.O. (2010) Handbook for Blast- Resistant Design of Buildings, John Wiley & Sons, Inc, New Jersey and Canada, p.486.
  8. Geng, S., Wei, Y., Wang, W. (2021) Dynamic Increase Factor of an Equivalent SDOF Structural System for Beams with Different Support Conditions under Conventional Blast Loading, J. Eng. Mech., 147(4), p.06021002.
  9. Haitham, A.T. (2016) A Modified Single Degree of Freedom Method for the Analysis of Building Steel Columns Subjected to Explosion Induced Blast Load, Int. J. Impact Eng., 94, pp.120~133.
  10. Liu, Y., Yan, J.B., Huang, F.L. (2018) Behavior of Reinforced Concrete Beams and Columns Subjected to Blast Loading, Def. Technol., 14, pp.550~559.
  11. McKenna, F.T. (1997) Object-Oriented Finite Element Programming: Frameworks for Analysis, Algorithms and Parallel Computing, Ph.D.thesis, Univ. of California, Berkeley, CA.
  12. Nassr, A.A., Razaqpur, A.G., Tait, M.J., Gampidelli, M., Foo, S. (2013) Strength and Stability of Steel Beam Columns under Blast Load, Int. J. Impact Eng., 55, pp.34~48.
  13. NORSOK (2013) Norwegian Standards: Design of Steel Structures (N-004), Standards Norway, Oslo, p.264.
  14. PDC-TR06-08 (2008) Single Degree of Freedom Structural Response Limits for Antiterrorism Design, US Army Corps of Engineers, p.35.
  15. Rong, H.C., Li, B. (2008) Deformation-Controlled Design of Reinforced Concrete Flexural Members Subjected to Blast Loadings, J. Struct. Eng., 134(10), pp.1598~1610.
  16. UFC3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, Depart of Defence (DoD), p.1943.
  17. Yokoyama, T. (2015) Limits to Deflected Shape Assumptions of the SDOF Methodology for Analyzing Structural Components Subject to Blast Loading, J. Perform. Constr. Facil, 29(5), p.B4014008.