DOI QR코드

DOI QR Code

불소 함유 반도체 슬러지를 활용한 저온 소성 기술로 제조된 백색 포틀랜드 시멘트 클링커 특성

Characteristics of White Portland Cement Clinker Produced from Low-temperature Sintering Technology using Fluorine based Semiconductor Sludge

  • 박수현 ((주)유니온 기술연구소) ;
  • 나현엽 ((주)유니온 기술연구소) ;
  • 황봉춘 ((주)유니온 기술연구소) ;
  • 엄주일 ((주)유니온 기술연구소) ;
  • 김윤용 (충남대학교 토목공학과)
  • Su-Hyeon Park (Reasearch Institute, Union Corporation) ;
  • Hyun-Yeop Na (Reasearch Institute, Union Corporation) ;
  • Bong-Choon Hwang (Reasearch Institute, Union Corporation) ;
  • Ju-il Eom (Reasearch Institute, Union Corporation) ;
  • Yun-Yong Kim (Department of Civil Engineering, Chungnam National University)
  • 투고 : 2024.05.13
  • 심사 : 2024.06.14
  • 발행 : 2024.06.30

초록

본 논문에서는 산업부산물인 불소 함유 반도체 슬러지를 재활용하기 위하여 광화제로써 시멘트 클링커 소성온도 저감 효과를 증명하기 위하여 시멘트 클링커 및 시멘트 품질에 미치는 영향을 연구하였다. 또한, 기존 광화제로 사용되는 천연 형석을 사용하였을 때의 온도별 클링커 및 시멘트 특성을 비교하기 위한 검증 연구도 진행됐다. 연구 결과, 반도체 슬러지는 광화제로써 충분한 효과를 보여지고 있으며, 기존 광화제인 천연형석을 대체할 수 있는 것으로 나타났다.

In this paper, the effect on cement clinker and cement quality was studied to prove the effect of reducing the sintering temperature of cement clinker as a mineralizer to recycle fluorine based semiconductor sludge, an industrial by-product. In addition, a verification study was conducted to compare the properties of clinker and cement at different temperatures when natural fluorite, previously used as a mineralizer, was used. As a result of the study, semiconductor sludge showed sufficient effectiveness as a mineralizer and could replace natural fluorite, an existing mineralizer.

키워드

과제정보

이 연구는 2024년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(RS-2024-00266009).

참고문헌

  1. Ahn, J.W., Kim, H.S., Cho, J., Han, G.C., Han, K.S., Kim, H. (2003). Manufacture of ordinary Portland cement clinker using cement paste of the waste concrete, Journal of the Korean Ceramic Society, 40(8), 804-810 [in Korean].
  2. Altun, I.A. (1999). Effect of CaF2 and MgO on sintering of cement clinker, Cement and Concrete Research, 29(11), 1847-1850.
  3. Arai, Y., Jang, B.G. (1998). Cement Materials Chemistry, Chonnam National University Publishing Department, 152-153.
  4. Blanco-Varela, M.T., Vazquez, T. (1981). Ahorro de energia en la clinkerizacion empleando CaF2y CaS04 como mineralizadores. Estudio de la fluorellestadita, Materiales de Construccion, 31(181), 55-64.
  5. Choi, J.W., Gwon, S.J., Gang, B.H. (2020). Effect of semiconductor sludge addition on clinker burnability and cement quality, The Proceedings of 47th Cement Symposium, 141-147.
  6. Christensen, N.H., Jepsen, O.L., Johansen, V. (1978). Rate of alite-formation in clinker sandwiches, Cement and Concrete Research, 8(6), 693-702.
  7. Engelsen, C.J. (2007). Advanced Cementing Materials - Effect of Mineralizers in Cement Production, Report No. SBF BK A07021, SINTEF Building and Infrastructure-Concrete Innovation Centre (COIN), Trondheim, Norway.
  8. Gutt, W. (1968). Manufacture of Portland cement from phosphatic raw materials, Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo, 1, 93-105.
  9. Gutt, W., Osborne, G.J. (1970). The system CaO-2CaO.SiO2.-CaF2, Transactions of the British Ceramic Society, 69, 125-129.
  10. Helmy, I.M. (2003). Utilization of some waste products as a mineralizers in the formation of Portland cement clinker, Industrial Ceramics, 23(1), 41-45.
  11. Hewlett, P.C. (1998). Chemistry of Cement and Concrete 4 ed, Butterworth-Heinemann: Oxford, MA USA,
  12. Johansen, V., Bhatty, J.I. (2011). Fluxes and Mineralizers in Clinkering Process, Innovations in Portland Cement Manufacturing, Portland Cement Association, 370.
  13. Kacimi, L., Simon-Masseron, A., Ghomari, A., Derriche, Z. (2006). Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties, Comptes Rendus. Chimie, 9(1), 154-163.
  14. Kakali, G., Parissakis, G., Bouras, D.(1996). A study on the burnability and the phase formation of PC clinker containing Cu oxide, Cement and Concrete Research, 26(10), 1473-1478.
  15. Katerina, M., Frantisek, S. (2001). White cement-properties, manufacture, prospects, Ceramics-Silikaty, 45(4), 158-163.
  16. Klemm, W.A., Jawed, I., Holub, K.J. (1979). Effects of calcium fluoride mineralization on silicates and melt formation in portland cement clinker, Cement and Concrete Research, 9(4), 489-496.
  17. Moir, G.K. (1982). Mineralized high alite clinker, World Cement, 13(10), 374-382.
  18. Moir, G.K. (1983). Improvements in the early strength properties of Portland cement. Philosophical Transactions of the Royal Society A, 310(1511), 127-138.
  19. Tazuddin, A., Aiyer, H., Chatterjee, A. (2020). Thermodynamic simulation in evaluating the role of minor oxides and mineralizers in Portland cement clinker phase formation, SN Applied Sciences, 2(10), 1737.
  20. Tran, T.T. (2011). Fluoride Mineralization of Portland Cement, Applications of Double Resonance NMR Spectroscopy in Structural Investigations of Guest Ions in Cement Phases, Ph.D Thesis, University of Aarhus.
  21. Tristana, Y.D. (2014). Influence of Ferrite Phase in Alite-Calcium Sulfoaluminate Cements, Ph.D Thesis, Material Science Engineering, University of Kentucky.