DOI QR코드

DOI QR Code

Basic Characteristics of ALC using Carbon dioxide Conversion Capture Materials

이산화탄소전환탄산화물 혼합 경량기포 콘크리트의 기초 특성

  • Hye-Jin Yu (Carbon Neutrality & Materials Digitalization Division, KICET) ;
  • Sung-Kwan Seo (Carbon Neutrality & Materials Digitalization Division, KICET) ;
  • Yong-Sik Chu (Carbon Neutrality & Materials Digitalization Division, KICET) ;
  • Woo-Sung Yum (Carbon Neutrality & Materials Digitalization Division, KICET) ;
  • Kuem-Dan Park (Carbon Neutrality & Materials Digitalization Division, KICET) ;
  • Young-Gon Kim (Production Technical Reserch Laboratory, SYC CO.,Ltd.) ;
  • Eun-Sung Yoo (Quality Control Team, SYC CO.,Ltd.)
  • 유혜진 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 서성관 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 추용식 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 염우성 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 박금단 (한국세라믹기술원 저탄소.디지털전환사업단) ;
  • 김영곤 ((주)에스와이씨 생산기술연구실) ;
  • 유은성 ((주)에스와이씨 품질관리팀)
  • Received : 2024.03.11
  • Accepted : 2024.04.15
  • Published : 2024.06.30

Abstract

In this study, the applicability of replacing DG(Desulfurized Gypsum) from oil refinery with CCCMs(Carbon dioxide Conversion Capture Materials) as an ALC(Auto-claved LIghtweight Concrete) raw material was examined, and basic properties of ALC was measured. The main chemical components of DG and CCCMs were CaO and SO3, and an increase in LOI(Loss of ignition) due to mineral carbonation reaction was verified. The crystalline phases of CCCMs were CaCO3, CaSO4, Ca(OH)2, and CaSO4·2H2O. When DG, a raw material for ALC production, was replaced with CCCMs, foaming height, pore shape, absolute dry gravity, and compressive strength results measured similar for all binders. In addition, the formation of tobermorite which is main crystalline phase of ALC was shown for all specimens in microstructural analysis.

본 연구에서는 정유사 탈황석고의 탄산화물 대체에 따른 ALC 제조 원료 적용 가능성을 검토하였으며, ALC 제조 실험을 통한 기초 특성 평가를 수행하였다. 탈황석고 및 탄산화물의 주성분은 CaO, SO3등으로 나타났으며, 광물탄산화 반응에 따른 강열감량 증가를 확인하였다. 탄산화물의 결정상은 CaCO3, CaSO4, Ca(OH)2 및 CaSO4·2H2O로 나타났다. ALC 제조 원료인 탈황석고를 탄산화물로 대체할 경우 발포 높이 및 기공 형상은 모든 시편에서 유사하게 나타났으며, 절건 비중, 압축강도 또한 유사한 것을 확인하였다. 아울러 결정상 분석 및 미세구조 관찰을 통해 모든 시편에서 ALC의 주결정상인 토버모라이트 결정 생성을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 규제자유특구혁신사업육성 지원에 의한 연구임.

References

  1. Core Writing Team, Lee, H., Romero, J. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, IPCC, Geneva, Switzerland, 1-184.
  2. Han, H.K., Jeon, J.S., Kim, M.S. (2012). Phase change of calcium carbonate by adding polymers, Korean Chemical Engineering Research, 50(2), 300-303 [In Korean].
  3. Hills, C.D., Tripathi, N., Carey, P.J. (2020). Mineralization technology for carbon capture, utilization, and storage, Frontiers in Energy Research, 8, 142.
  4. Kadashevich, I., Schneider, J.H., Stoyan, D. (2005). Statistical modeling of the geometrical structure of the system of artificial air pores in autoclaved aerated concrete, Cement and Concrete Research, 35(8), 1495-1502.
  5. Kurama, H., Topcu, I.B., Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash, Journal of Materials Processing Technology, 209(2), 767-773.
  6. Laukaitis, A., Fiks, B. (2006). Acoustical properties of aerated autoclaved concrete, Applied Acoustics, 67(3), 284-296.
  7. Laukaitis, A., Keriene, J., Mikulskis, D., Sinica, M., Sezemanas, G. (2009). Influence of fibrous additives on properties of aerated autoclaved concrete formain mixtures and strength characteristics of products, Construction and Building Materials, 23(9), 3034-3042.
  8. Lee, C.J., Song, J.H., Chung, C.W. (2021). Development of autoclave aerated concrete using circulating fluidized bed combustion ash, Journal of the Korean Recycled Construction Resources Institute, 9(1), 58-65.
  9. Lee, W.G., Kim, J.H., Kim, K.N., Song, M.S. (2021). Effect of blast furnace slag and desulfurized gypsum on hardening of CFBC boiler coal ash, Journal of the Korean Recycled Construction Resources Institute, 9(4), 443-450.
  10. Matsushita, F., Aono, Y., Shibata, S. (2004). Microstructure changes in autoclaved aerated concrete during carbonation under working and accelerated conditions, Journal of Advanced Concrete Technology, 2(1), 121-129.
  11. Merlino, S., Bonaccorsi, E., Armbruster, T. (2001). The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications, European Journal of Mineralogy, 13(3), 577-590.
  12. Mostafa, N.Y. (2005). Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete, Cement and Concrete Research, 35(7), 1349-1357.