DOI QR코드

DOI QR Code

기수호의 지하수-지표수 혼합대 내 질소 거동 분석

Nitrogen Transport In Groundwater-Surface Water Hyporheic Zone at Brackish Lake

  • 이슬기 (국립한밭대학교 환경공학과) ;
  • 주진철 (국립한밭대학교 건설환경공학과 ) ;
  • 문희선 (한국지질자원연구원 기후변화대응연구본부 지하수연구센터) ;
  • 김수련 (국립한밭대학교 환경공학과) ;
  • 김동준 (국립한밭대학교 환경공학과)
  • Seul Gi Lee (Department of Environmental Engineering, Hanbat National University) ;
  • Jin Chul Joo (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Hee Sun Moon (Groundwater Environmental Research Center, Climate Change Response Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Su Ryeon Kim (Department of Environmental Engineering, Hanbat National University) ;
  • Dong Jun Kim (Department of Environmental Engineering, Hanbat National University)
  • 투고 : 2023.12.11
  • 심사 : 2024.05.03
  • 발행 : 2024.06.30

초록

해수에 의해 염분의 영향을 받는 기수호(brackish lake)인 송지호의 퇴적물(sediment), 대수층 충진재(aquifer materials), 지표수, 지하수를 채수 및 채취하여 분석하고, 해당 시료를 이용하여 염분의 영향을 받는 혼합대(hyporheic zone)를 모사하는 pilot scale 컬럼 실험을 진행하였다. 지하수의 상향류 실험 결과, 소량의 염분을 포함한 지하수가 대수층 및 퇴적물로 용승하며 낮은 용존산소 농도를 유지하였다. 또한 대수층에서 염분과 낮은 용존산소로 인해 부분 탈질(partial denitrification)이 발생해 NO2-의 축적이 확인되었다. 퇴적물에서는 긴 체류시간에 의해 질소계 화합물이 흡착되거나 미생물 매개의 산화/환원 반응으로 인해 질소계 화합물 농도가 저감되었다. 지표수의 하향류 실험 결과, 높은 농도의 용존산소와 염분을 포함한 기수호의 지표수가 퇴적물과 대수층으로 침투하며 높은 용존산소 농도를 공급하였다. 이로인해 퇴적물과 대수층에서 생물학적 질산화(nitrification)가 발생하였고, 지표수의 높은 염분 농도에도 불구하고 질소계 오염물질이 저감되었다. 이를 통해, 염분의 영향을 받는 상향류의 혼합대의 경우 낮은 용존산소 농도로 부분 탈질이 발생하며 염분에 의해 NO2-가 축적되고, 하향류의 혼합대의 경우 높은 용존산소 농도에 의해 질산화가 발생하며 염분의 영향을 크게 받지 않는다. 이를 통해 기수호 내 염분이 혼합대의 질소 거동에 일부 영향을 미치나 DO, pH, 기질 농도, 유기물질 농도 등의 요인이 복합적으로 영향을 미치는 것을 확인하였다.

Sediment, aquifer materials, surface water, and groundwater from brackish Songji lake affected by salinity of seawater, were collected and a pilot scale column experiment was conducted to simulate the nitrogen transport through the hyporheic zone. Upstream experiments of groundwater displayed that groundwater containing a small amount of salt percolated into aquifers and sediments, maintaining low dissolved oxygen concentrations. In addition, partial denitrification occurred in the aquifer due to salinity and low dissolved oxygen, resulting in the accumulation of NO2-. In sediments,nitrogenous compounds were reduced due to adsorption by long residence times or microbial-mediated oxidation/reduction reactions. Downstream experiments of surface water displayed that surface water from the brackish lake, containing high concentrations of dissolved oxygen and salts, infiltrated into the sediments and aquifer, supplying high dissolved oxygen concentrations. This resulted in biological nitrification in the sediments and aquifer, which reduced nitrogen-based pollutants despite the high salt concentration in the surface water. Whereas partial denitrification at low dissolved oxygen concentrations in the upwelling mixing zone was observed by salinity and accumulated NO2-, nitrification at high dissolved oxygen concentrations in the downwelling mixing zone was not significantly affected by salinity. These results confirm that salinity in the brackish water lake has some influence on the nitrogen behavior of the hyporheic mixing zone, although nitrogen behavior is a complex combination of factors such as DO, pH, substrate concentration, and organic matter concentration.

키워드

과제정보

This work was supported by the Basic Research Project (22-3411) of the Korea Institute of Geoscience and Mineral Resources (KIGAM), funded by the Ministry of Science and Information and Communications Technology.

참고문헌

  1. Battin, T.J., Besemer, K., Bengtsson, M.M., Romani, A. M., and Packmann, A.I. 2016. The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology 14(4): 251-263.
  2. Beaulieu, J.J., Tank, J.L., Hamilton, S.K., Wollheim, W. M., Hal l Jr, R.O., Mul hol l and, P.J., ... and Thomas, S.M. 2011. Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences 108(1): 214-219.
  3. Boulton, A.J. 1993. Stream ecology and surface-hyporheic hydrologic exchange: implications, techniques and limitations. Marine and Freshwater Research, 44(4): 553-564.
  4. Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., and Valett, H.M. 1998. The functional significance of the hyporheic zone in streams and rivers. Annual review of Ecology and systematics 29(1): 59-81.
  5. Cardenas, M.B. 2015. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research 51(5): 3601-3616.
  6. Cui, Y.W., Peng, Y.Z., Peng, C.Y., Gan, X.Q., and Ye, L. 2006. Achieving biological nitrogen removal via nitrite by salt inhibition. Water Science and Technology 53(6): 115-122.
  7. Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q., and Chen, Q. 2023. Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environmental Research 225: 115590.
  8. Fernald, A.G., Wigington Jr, P.J., and Landers, D.H. 2001. Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research 37(6): 1681-1694.
  9. Findlay, S. 1995. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnology and Oceanography 40(1): 159-164.
  10. Franken, R.J., Storey, R.G., and Dudley Williams, D. 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183-195.
  11. Gardner, W.S., Seitzinger, S.P., and Malczyk, J.M. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: does ion pairing affect ammonium flux? Estuaries 14: 157-166.
  12. Gomez-Velez, J.D., Krause, S., and Wilson, J.L. 2014. Effect of low-permeability layers on spatial patterns of hyporheic exchange and groundwater upwelling. Water Resources Research 50(6): 5196-5215.
  13. Holmes, R.M. 2000. The importance of ground water to stream ecosystem function, In Streams and Ground Waters, Academic Press.
  14. Holt, J.G., Krieg, N.R., Sneath, P.H., Staley, J.T., and Williams, S.T. 1994. Bergey's manual of determinate bacteriology.
  15. Hyun, Y.J. and Kim, Y.S. 2013. Environmental aspects and management of hyporheic zones, Korea Environment Institute.
  16. Jeon, W.H., Kim, D.H., Lee, S.H., Hwang, S., Moon, H.S., and Kim, Y. 2021. Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea. Journal of Soil and Groundwater Environment 26(6): 144-156. (in Korean)
  17. Jiang, Q., Jin, G., Tang, H., Xu, J., and Chen, Y. 2021. N2O production and consumption processes in a salinity-impacted hyporheic zone. Journal of Geophysical Research: Biogeosciences 126(10): e2021JG006512.
  18. Kaufman, M.H., Cardenas, M.B., Buttles, J., Kessler, A.J., and Cook, P.L. 2017. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resources Research 53(8): 6642-6662.
  19. Kim, H.G. and Ahn, D.H. 2019. Effects on Microbial Activity of Aerobic Granular Sludge (AGS) in High-Salinity Wastewater. Journal of Environmental Science International 28(7): 629-637.
  20. Kim, K.Y., Chon, C.M., Kim, T.H., Oh, J.H., Jeoung, J.H., and Park, S.K. 2006. Use of a temperature as a tracer to study stream-groundwater exchange in the hyporheic zone. Economic and Environmental Geology 39(5): 525-535. (in Korean)
  21. Krause, S., Tecklenburg, C., Munz, M., and Naden, E. 2013. Streambed nitrogen cycling beyond the hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and dissolved oxygen in the upwelling groundwater of a lowland river. Journal of Geophysical Research: Biogeosciences 118(1): 54-67.
  22. Kwak, S.J., Yoo, S.H., and Chang, J.I. (2005). Measuring the conservation value of lagoons: the case of Songji Lagoon. Ocean and Polar Research 27(2): 161-169. (in Korean)
  23. Loehr, R. 1984. Pollution control for agriculture. Elsevier.
  24. Lee, S.H. and Yu, K. 2011. Depositional environments of Holocene laminated layers in the core SJ99 collected from the Songjiho Lagoon on the eastern coast of Korea. Journal of the Geological Society of Korea 47(2): 123-137. (in Korean)
  25. Peralta-Maraver, I., Reiss, J., and Robertson, A.L. 2018. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Science of the Total Environment 610: 267-275.
  26. Poole, G.C., Stanford, J.A., Running, S.W., and Frissell, C.A. 2006. Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. Journal of the North American Benthological Society 25(2): 288-303.
  27. Ray, N.E., Hancock, B., Brush, M.J., Colden, A., Cornwell, J., Labrie, M.S., ... and Fulweiler, R.W. 2021. A review of how we assess denitrification in oyster habitats and proposed guidelines for future studies. Limnology and Oceanography: Methods 19(10): 714-731.
  28. Reeder, W.J., Quick, A.M., Farrell, T.B., Benner, S.G., Feris, K.P., and Tonina, D. 2018. Spatial and temporal dynamics of dissolved oxygen concentrations and bioactivity in the hyporheic zone. Water Resources Research 54(3): 2112-2128.
  29. Schaper, J.L., Posselt, M., Bouchez, C., Jaeger, A., Nuetzmann, G., Putschew, A., ... and Lewandowski, J. 2019. Fate of trace organic compounds in the hyporheic zone: Influence of retardation, the benthic biolayer, and organic carbon. Environmental Science & Technology, 53(8): 4224-4234.
  30. Strock, J.S. 2008. Ammonification. In Encyclopedia of ecology, five-volume set, Minnesota, USA, pp. 162-165, Elsevier Inc.
  31. Thibodeaux, L.J. and Boyle, J.D. 1987. Bedform-generated convective transport in bottom sediment. Nature 325 (6102): 341-343.
  32. Triska, F.J., Jackman, A.P., Duff, J.H., and Avanzino, R.J. 1994. Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26: 67-83.
  33. van Dijk, G., Nijp, J.J., Metselaar, K., Lamers, L.P., and Smolders, A.J. 2017. Salinity-induced increase of the hydraulic conductivity in the hyporheic zone of coastal wetlands. Hydrological Processes 31(4): 880-890.
  34. Wan, C., Yang, X., Lee, D.J., Liu, X., Sun, S., and Chen, C. 2014. Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor. Bioresource Technology 152: 1-6.
  35. Wang, H., Gilbert, J.A., Zhu, Y., and Yang, X. 2018. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment 631: 1342-1349.
  36. Williams, D.D., Febria, C.M., and Wong, J.C. 2010. Ecotonal and other properties of the hyporheic zone. Fundamental and Applied Limnology 176(4): 349.
  37. Xia, X., Zhang, S., Li, S., Zhang, L., Wang, G., Zhang, L., ... and Li, Z. 2018. The cycle of nitrogen in river systems: sources, transformation, and flux. Environmental Science: Processes & Impacts 20(6): 863-891.
  38. Zhao, S., Zhang, B., Sun, X., and Yang, L. 2021. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Science of the Total Environment 762: 144168.
  39. Zheng, L., Cardenas, M.B., and Wang, L. 2016. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. Journal of Geophysical Research: Biogeosciences 121(4): 1086-1103.
  40. Zheng, L. and Bayani Cardenas, M. 2018. Diel stream temperature effects on nitrogen cycling in hyporheic zones. Journal of Geophysical Research: Biogeosciences 123(9): 2743-2760.
  41. Zhou, N., Zhao, S., and Shen, X. 2014. Nitrogen cycle in the hyporheic zone of natural wetlands. Chinese Science Bulletin 59: 2945-2956.