• Title/Summary/Keyword: Nitrogen cycle

Search Result 354, Processing Time 0.03 seconds

Investigation on Efficiency Improvement of the Nitrogen Expander Cycle : Natural Gas Liquefaction Process for LNG-FPSO (LNG-FPSO(Liquefied Natural Gas-Floating Production Storage and Offloading)용 질소 팽창 사이클의 효율 개선에 대한 연구)

  • Baek, Seung-Whan;Jeong, Sang-Kwon;Kim, Sun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.442-447
    • /
    • 2010
  • FPSO (Floating Production Strorage and Offloading) method for LNG industry is efficient and facile compared to onshore NG (Natural Gas) treatment facility. Five simple natural gas liquefaction cycles for FPSO are presented and simulated in this paper. SMR (Single Mixed Refrigerant) cycle, SNE (Single Nitrogen Expander) cycle, DNE (Double Nitrogen Expander) cycle, PNE (Precooled Nitrogen Expander) cycle, and PDNE (Precooled Double Nitrogen Expander) cycle are compared. Simple analysis results in this paper show that precooling process and adding an expander in the liquefaction cycle is an effective way to increase liquefaction efficiency.

A Study on the Nitrogen Liquefaction Using Linde, Claude and Advanced Cycle (Linde, Claude 및 Advanced 사이클을 이용한 질소액화공정 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.261-265
    • /
    • 2022
  • In this paper, comparative studies between Linde, Claude and advanced cycle for the liquefaction of nitrogen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of nitrogen. When using Claude liquefaction, we can reduce the total compression power by 49.25% for the comparison of Linde cycle. And finally, we could conclude that 90.41% of total compression power was saved when using an advanced cycle being compared to Linde liquefaction cycle.

Influence of Aeration Cycle on Nitrogen and Phosphorus Removal in Two-Stage Intermittent Aeration System (2단 간헐폭기 시스템에서 aeration cycle이 질소 및 인 제거에 미치는 영향)

  • Jeong, Myoung-Sun;Lee, Jun-Ho;Seo, Kwang-Bum;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.193-197
    • /
    • 2003
  • This bench-scale research investigated the aeration cycle(on/off) as the controlling factors for nitrogen and phosphorus removal in a 2-stage, intermittent aeration process. At this experiment, the aeration cycle time(air-on/air-off) was 30min/30min, 60min/60min, 90min/90min. Organic matter removal was observed more than 90% regardless of the aeration cycle and phosphorus removal was relatively high when the aeration cycle time was 60min/60min On the other hand. For all of the aeration cycle, TN removal was appeared less than 55%. This result was probably due to the limitation of the external substrate for heterotrophic nitrification and aerobic denitrification.

  • PDF

Advanced Dual Refrigerant Expansion Cycle for LNG Liquefaction (천연가스 액화용 이중 냉매 팽창 사이클)

  • Kim, Minki;Kim, Mungyu;Lee, Kihwan;Kim, Hyobin;Lee, Donghun;Min, Joonho;Kim, Jinmo
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.46-55
    • /
    • 2019
  • This paper presents a LNG Liquefaction cycle configuration using two stages of methane expansion (i.e. spliting into two stages as warm & cold to generate an additional inflection point within a cold composite curve) and a single stage of nitrogen expansion to improve the efficiency of the conventional Methane & Nitrogen Expansion Cycle. In comparison with Double Nitrogen Expansion Cycel and Methane & Nitrogen Expansion Cycle, the cycle efficiency has increased approximately from 13.92 and 13.13 to 12.08 kW/ton/day (8~15% efficiency increase). A Life Cycle Cost (LCC) analysis based on Net Present Value (NPV) also show an improvement in therms of project NPV, against a minor increment of a CAPEX.

Effect of Alteration of Light-Darkness Cycle on Nitrogen Retention in the Rat (주야 변경이 흰쥐의 체내 질소 보유에 미치는 영향)

  • Kim, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.16 no.4
    • /
    • pp.273-280
    • /
    • 1983
  • The effect of alteration of light-darkness cycle on the protein metabolism was studied in the rat. The light-darkness cycle was altered either every 3 or 9 days, and animals consumed diets containing 8 or 25% casein. The results were summarized as follows : 1) Food consumptions and body weight gains of the 25% casein groups were higher than those of the 8% casein groups, and, among the animals consumed 25% casein diet, the light-darkness cycle altered group had lower food consumption and body weight gain than the unaltered group. 2) Weights of liver and adrenal gland per l00g body weight were not different with the dietary protein levels, but, at the end of experimental period, the 8% casein diet group of which light-darkness cycle altered every 9 days had the smallest liver weight and the largest adrenal gland weight. 3) Liver nitrogen and plasma protein concentrations of the 25% casein groups were slightly higher than those of the 8% casein groups. 4) Percentages of nitrogen retention of the 25% casein groups at period III were slightly lower in the light-darknerr cycle altered animals than that of the unaltered group.

  • PDF

Nitrification/Denitrification Rate and Classification of Output Nitrogen according to COD Loads in SBR (연속회분식 공정에서 COD부하에 따른 질산화/탈질율 및 유출질소 분휴)

  • Lee, Jaekune;Yim, Soobin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, we investigated the nitrification/denitrification rate and classification of output nitrogen of a sequencing batch reactor (SBR) system with the variation of COD loads ; COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$ were tested to determine the optimum conditions for the operation of the SBR and increase its nitrogen removal efficiency. As the COD loads increased, the nitrification rate at aerobic(I) period and the denitrification rate at anoxic(I) period were decreased. With the variation of COD loads, the amounts of nitrogen removed in the clarified water effluent were 63.9, 54.2, 34.7, 22.5, 13.7, 12.5 and 26.5 mg/cycle, respectively. The amounts of nitrogen removed during the sludge waste process were 19.5, 26.6, 41.0, 47.3, 58.1, 72.4 and 88.1 mg/cycle, respectively. The amounts of nitrogen removed by denitrification were 66.8, 69.3, 68.9, 56.5, 39.5, 7.3 and 0.0 mg/cycle, respectively, indicating that COD load more than $0.7kgCOD/m^3{\cdot}d$ decreases the amounts of denitrified nitrogen. The nitrogen mass balances were calculated as the percentages of nitrogen removed in the clarified water effluent or by denitrification and sludge waste processing in each cycle of SBR operation and were 99.0, 98.5, 95.4, 82.1, 73.0, 60.5 and 74.8% for COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$, respectively.

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 3. The Cycles of Nitrogen (관악산의 잔디와 억새 생태계에 있어서 에너지의 흐름과 무기물의 순환 3.질소의 순환)

  • 장남기;김정석;강경미
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.265-273
    • /
    • 1995
  • This investigation is carried out to clarify the cycles of nitrogen in the grassland ecosystems of Zoysia japonica and a Miscanthus sinensis on Mt. Kwanak. The hasic differential equation for the rate of change of nitrogen storage is illustrated hy huild-up and turnover of organic nitrogen, particularly in the ecosystems. The turnover velocity fractions of nitrogen for the Z. japonica and M .sinensis grasslands were k= 0. 181 and k=0. 166, respectively. The times required to reach 50, 95 and 99 percent of the steady state levels and turnover values of nitrogen on the grassland floors were 3.85, 16.67 and 27.78 years in the Z japonica grassland and 4.08, 17.65 and 29.41 years in the M sinensis grassland. The amount of annual cycles of nitrogen are 560.2 g /$m^2$ in the Z.japonica grassland and 654.1 g /$m^2$ in the M. sinensis grassland. Key words : Zsysia japonica Alisca nthus sinensis, Mt. Kivanak, Nitrogen cycle.

  • PDF

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

A Study on Homeostasis in Albino Rats by Feeding on Imbalanced Protein Diet (불균형식이(不均衡食餌)에 의(依)한 백서체내(白鼠體內) Homeostasis에 대(對)한 연구(硏究))

  • Ryu, Tcheong-Kun
    • Journal of Nutrition and Health
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1974
  • This Study was carried out to observe the effect of nutritional condition on the change of protein metabolism in the animal body by feeding on imbalanced protein diet. A total 242 growing male albino rats, weighing $115{\sim}120$ gm, were used for the experimental animals. The rats were fed on the standard diet(st), protein flee diet(pf) and imbalanced protein diet(ib) for twelve weeks respectively. Hemoglobin, packed cell volume in blood, and total nitrogen, amino acid nitrogen, urea-nitrogen, creatinine, transaminases(GPT, GOT) in liver and serum, and total nitrogen in small intestine, and total nitrogen, urea-nitrogen In small intestine, and total nitrogen, urea-nitrogen, creatinine, urea-nitrogen/creatinine ratio in urine were measured. The results obtained are as follows; 1. The gained body weight were lower in pf group and ib group than those of st group. The gained body weight fed for 12 weeks, were 80% lower in pf group than those of st group, and the body weight of pf group for $50{\sim}75$ days feeding were $40{\sim}60%$ decreased, compared with the stating weight, and then all of them died. 2. The change of the brain, liver, kidney, spleen and small intestine by feeding on imbalanced diet for 12 weeks were no remarkable difference with the starting weight, but those of protein free diet group were half or more decrease and those were significantly lower in spleen and small intestine especially than the other organ 3. The contents of hemoglobin in pf group for 8 weeks feeding, and the packed cell volume in pf group for 8 weeks feeding and in ib group for 12 weeks feeding were decreased. but those of the other feeding group were almost same value. 4. The total nitrogen in the liver, small intestine and serum of each diet group were no remarkable difference respectively. The contents of amino acid nitrogen in pf group for 2 and 6 weeks feeding were increased. 5. On transaminases: a) The cycle of increase and decrease of GPT activities were come periodically and the interval of cycle were fast in the early stage of feeding and slow there-after. b) The GPT activities were decreased gradually in pf group after feeding and those were increased in ib group for 6 weeks feeding but decreased there-after. The frequency of cycle were more GPT than GOT and specially those of GPT in early stage of feeding were two or three times while GOT was one. c) The interval of increase and decrease in GOT and amino acid nitrogen cycle were similar tendency. 6. The contents of total nitrogen, creatinine and urea-nitrogen of pf group in urine were decreased very sharply from sharting feeding to one week but increased dully from six weeks to eight weeks feeding. The contents of urea-nitrogen of ib group were increased dully by feeding on ten weeks but decreased by feeding on twelve weeks. From the above results, it is concluded that the trend of the metabolic change is maintained equally by homeostatic mechanism using the endogenous protein source during a certain period by imbalanced protein diet feeding. The homeostatic mechanism is come peridically, very fast in early stage of feeing and than slow there-after.

  • PDF

Operation Mode in Sequencing Batch Reactor for Nitrogen Removal (질소제거를 위한 연속회분식 반응조의 운전방식 연구)

  • Shin, Hang Sik;Kwon, Joong Chun;Koo, Ja Kong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.77-88
    • /
    • 1988
  • This research investigated the effect of COD/N ratio on nitrogen removal, and the use of organics in raw wastewater as a carbon source for denitrification in SBR(Sequencing Batch Reactor) systems. Four laboratory scale reactors were operated in three modes. Only the difference between modes were; Mode I operated in aerated condition during fill while Mode II in anoxic condition and Mode III operated on two fills per cycle in anoxic condition. When COD/N ratio increased, total nitrogen removal efficiencies increased from 8.7 to 57.7 percent in Mode I, from 28.9 to 83.2 percent in Mode II and from 42.7 to 97.8 percent in Mode III, respectively. COD removal efficiencies ranged from 93 to 98 percent throughout the study. SBR operation in Mode III of feeding twice per cycle in anoxic condition was an effective operating method for nitrogen removal and nitrogen concentration in effluent can be estimated using influent COD and nitrogen concentrations.

  • PDF