DOI QR코드

DOI QR Code

Regeneration of solid phase filter by chemical cleaning

  • Byung-Dae Lee (Department of Health Management, Uiduk University)
  • Received : 2023.11.10
  • Accepted : 2024.02.07
  • Published : 2024.02.28

Abstract

Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.

Keywords

References

  1. K. Byeon and E. Jang, "Comparison of operational efficiency between sand-filtration process and membrane filtration process", J. Kor. Soc. Water Wastewater, Vol.31, No.6 pp. 529-537, (2017).  https://doi.org/10.11001/jksww.2017.31.6.529
  2. F. K. Katrivesis, V. Sygouni, C. A. Paraskeva, and V. G. Papadakis, "A Performance Comparison of Pilot-Scale Sand Filtration and Membrane Filtration of Glafkos River Water", J. Membr. Sci. Eng., Vol.9, No.2 pp. 203, (2021). 
  3. A. Abdel-Karim, S. Leaper, C. Skuse, G. Zaragoza, M. Gryta, and P. Gorgojo, "Membrane cleaning and pretreatments in membrane distillation - a review", Chem. Eng. J., Vol.422 pp. 129696, (2021). 
  4. J. C.-T. Lin, D.-J. Lee, and C. Huang, "Membrane Fouling Mitigation: Membrane Cleaning", Sep. Sci. Technol., Vol.45, No.7 pp. 858-872, (2010).  https://doi.org/10.1080/01496391003666940
  5. Y. Guo, Z. Wang, Y. Ma, P. Li, and G. Hu, "A new composite model of the membrane cleaning for predicting the fouling resistance in the hydraulic cleaning process", J. Membr. Sci., Vol.602 pp. 117957, (2020). 
  6. J. Ahmed and Y. Jamal, "A pilot application of recycled discarded RO membranes for low strength gray water reclamation", Environ.. Sci. Pollu. Res., Vol.28 pp. 34042-34050, (2021).  https://doi.org/10.1007/s11356-020-11117-z
  7. W. Guo, H.-H. Ngo, and J. Li, "A mini-review on membrane fouling", Biore. Technol., Vol.122 pp. 27-34, (2012).  https://doi.org/10.1016/j.biortech.2012.04.089
  8. Q. She, R. Wang, A. G. Fane, and C. Y. Tang, "Membrane fouling in osmotically driven membrane processes: A review", J. Membr. Sci., Vol.499 pp. 201-233, (2016).  https://doi.org/10.1016/j.memsci.2015.10.040
  9. T. Mohammadi, S. S. Madaeni, and M. K. Moghadam, "Investigation of membrane fouling", Desalination, Vol.153, No.1-3 pp. 155-160, (2003).  https://doi.org/10.1016/S0011-9164(02)01118-9
  10. J. S. Vrouwenvelder, J. A. M. van Paassen, L. P. Wessels, A. F. van Dam, and S. M. Bakker, "The Membrane Fouling Simulator: A practical tool for fouling prediction and control", J. Membr. Sci., Vol.281, No.1-2 pp. 316-324, (2006).  https://doi.org/10.1016/j.memsci.2006.03.046
  11. https://shop.sartorius.com/ww/p/polyethersulfone-pes-membrane-filters/M_Polyethersulfone_Membrane_Filters#(2023. 10. 07. access). 
  12. https://www.veoliawatertechnologies.com/en/hydrex-water-treatment-chemicals(2023. 10. 07. access). 
  13. A. W. Zularisam, A. F. Ismail, M. R. Salim, M. Sakinah, and H. Ozaki, "The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes", Desalination, Vol.212, No.1-3 pp. 191-208, (2007).  https://doi.org/10.1016/j.desal.2006.10.010
  14. H. Rabiee, V. Vatanpour, M. H. D. A. Farahani, and H. Zarrabi, "Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles", Sep. Purif. Technol., Vol.156 pp. 299-310, (2015). https://doi.org/10.1016/j.seppur.2015.10.015