DOI QR코드

DOI QR Code

Skin Permeability Study of Flavonoids Derived from Smilax china: Utilizing the Franz Diffusion Cell Assay

  • Sun-Beom Kwon (Department of Biotechnology, Korea National University of Transportation) ;
  • Ji-Hui Kim (Department of Biotechnology, Korea National University of Transportation) ;
  • Mi-Su Kim (Department of Biotechnology, Korea National University of Transportation) ;
  • Su-Hong Kim (Department of Biotechnology, Korea National University of Transportation) ;
  • Seong-Min Lee (Macrocare Co., Ltd) ;
  • Moo-Sung Kim (Macrocare Co., Ltd) ;
  • Jun-Sub Kim (Department of Biotechnology, Korea National University of Transportation) ;
  • Gi-Seong Moon (Department of Biotechnology, Korea National University of Transportation) ;
  • Hyang-Yeol Lee (Department of Biotechnology, Korea National University of Transportation)
  • 투고 : 2023.12.26
  • 심사 : 2024.01.31
  • 발행 : 2024.02.28

초록

토복령은 우수한 항균, 항산화, 항염증 효능을 가진 소재로 알려져 있다. 이러한 토복령(Smilax china)의 추출물의 기능성을 화장품에 적용하기 위한 기초연구로써 토복령에서 발견되는 플라보노이드인 quercetin, catechin, naringenin의 농도별 경피 투과 특성을 조사할 필요성이 있다. Marzulli의 정의에 적용한 결과 케르세틴의 Kp 값은 0.1 mg/mL에서 "빠름"으로 분류되었고, 0.2 및 0.4 mg/mL에서 "보통"으로 분류되었다. 특히, 농도가 증가함에 따라 투과 속도가 감소하는 경향이 있었다. 나린제닌의 경우 Flux 값은 각각 0.1, 0.2 및 0.4 mg/mL 농도에서 0.69, 1.07 및 1.42 ㎍/hr/cm2이었으며, 해당 Kp 값은 각각 6.95, 5.34 및 3.56이었다. 나린제닌의 Kp 값은 모든 농도에서 "보통" 범주에 속하며, 케르세틴과 관찰된 것과 같이 농도가 높아짐에 따라 투과 속도가 감소하였다. 카테킨의 경우 Flux 값은 각각 0.1, 0.2 및 0.4 mg/mL 농도에서 0.75, 1.09 및 1.66 ㎍/hr/cm2이었으며, 해당 Kp 값은 각각 7.55, 5.46 및 4.16이었다. 카테킨의 Kp 값은 모든 농도에서 일관되게 "보통"으로 분류되었다. 여드름 저해능 및 항염증 효능이 우수한 토복령 추출물의 유효성분인 quercetin, catechin, naringenin의 경피 투과 특성이 보통 이상으로 나타나 기능성 화장품에 사용할 수 있는 우수한 천연물 소재인 것을 확인할 수 있었다.

Smilax china is known for its excellent antimicrobial, antioxidant, and anti-inflammatory properties. As a foundational study for applying the functionality of Smilax china extracts to cosmetics, it is necessory to investigate the concentration-dependent skin permation characteristics of the flavonoids in the extract, namely quercetin, catechin, and naringenin. Therefore, it serves as a crucial method for conducting this basic research on the functional aspects fo Smilax china extracts for cosmetic applications. This investigation focused on examining the percutaneous permeability characteristics of flavonoids originating from Smilax china. Applying Marzulli's definition, the Kp value of quercetin was categorized as "fast" at 0.1 mg/mL and "moderate" at 0.2 and 0.4 mg/mL. Notably, the permeation rate exhibited a decline with increasing concentration. For naringenin, Flux values were 0.69, 1.07, and 1.42 ㎍/hr/cm2 at concentrations of 0.1, 0.2, and 0.4 mg/mL, respectively, with corresponding Kp values of 6.95, 5.34, and 3.56. Naringenin's Kp value fell into the "moderate" category across all concentrations, and as observed with quercetin, the permeation rate decreased with higher concentrations. Likewise, for catechin, Flux values were 0.75, 1.09, and 1.66 ㎍/hr/cm2, and corresponding Kp values were 7.55, 5.46, and 4.16. Catechin's Kp value was consistently classified as "moderate" across all concentrations. The efficacy of quercetin, catechin, and naringenin, active ingredients in high-performance and anti-inflammatory Smilax china extracts, was found to exhibit skin penetration properties above the average. This confirms their suitability as excellent natural materials for use in functional cosmetics, given their outstanding capabilities in preventing acne and reducing inflammation.

키워드

과제정보

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE) (2021RIS-001).

참고문헌

  1. X. Hu, H. He, "A Review of Cosmetic Skin Delivery", J. Cosm. Derm., Vol.20, No.7 pp. 2020-2030, (2021). doi:10.1111/jocd.14037. 
  2. J. E. Seo, J. Lee, B. H. Kim, "A Permeation Characteristics Study of Water- or Oil-soluble Substances through Condition for the In Vitro Skin Absorption Method", J. Environ. Health Sci., Vol.43, No.1 pp. 77-86, (2017). 
  3. T. J. Franz, "Percutaneous Absorption in the Relevance of in Vitro Data", J. Invest. Dermatol., Vol.64, No.3 pp. 190-195, (1975). doi:10.1111/1523-1747.ep12533356. 
  4. OECD. "OECD Guideline for the Testing of Chemicals", No.428 (2004). 
  5. S. Zsiko, E. Csanyi, A. Kovacs, M. Budai-Szucs, A. Gacsi, S. Berko, "Methods to Evaluate Skin Penetration In Vitro", Sci. Pharm., Vol.87, No.3 pp. 19, (2019) 
  6. S. Jiang, Q. Wei, X. Ye, D. Luo, X. Zhang, Z. Li, P. You, X. Huang, Y. Liu, "The Anti-Inflammatory Effect of Smilax china L. Extract on LPS-Stimulated THP-1 via Downregulation of MAPK and NF-kappaB Signaling Pathway", Evid. Based Complement Alternat. Med, Vol. 2021, pp. 9958808, (2021). doi:10.1155/2021/9958808. 
  7. H. Feng, Y. He, L. La, C. Hou, L. Song, Q. Yang, F. Wu, W. Liu, L. Hou, Y. Li, "The Flavonoid-Enriched Extract from the Root of Smilax china L. Inhibits Inflammatory Responses via the TLR-4-mediated Signaling Pathway", J. Ethnopharmacol., Vol.256, pp. 112785, (2020). doi:10.1016/j.jep.2020.112785. 
  8. C. M. Kawakami, L. R. Gaspar, "Mangiferin and Naringenin Affect the Photostability and Phototoxicity of Sunscreens Containing Avobenzone", J. Photochem. and Photobiol. B: Biology, Vol.151, pp. 239-247, (2015). doi:https://doi.org/10.1016/j.jphotobiol.2015.08.014. 
  9. J. H. Kim, T. S. Park, S. H. Yang, J. W. Suh, S. M. Shim, "Microbial Bioconversion and Processing Methods Enhance the Phenolic Acid and Flavonoids and the Radical Scavenging Capacity of Smilax china L. Leaf", J. Sci. Food. Agric., Vol.96, No.3 pp. 878-885, (2016). doi:10.1002/jsfa.7160. 
  10. L. Kong, W. Zhang, S. Liu, Z. Zhong, G. Zheng, "Quercetin, Engelitin and Caffeic Acid of Smilax china L. Polyphenols, Stimulate 3T3-L1 Adipocytes to Brown-like Adipocytes Via beta3-AR/AMPK Signaling Pathway", Plant Foods Hum. Nutr., Vol.77, No.4 pp. 529-537, (2022). doi:10.1007/s11130-022-00996-x. 
  11. Y. H. Kuo, Y. W. Hsu, C. C. Liaw, J. K. Lee, H. C. Huang, L. M. Kuo, "Cytotoxic Phenylpropanoid Glycosides from the Stems of Smilax china", J. Nat. Prod., Vol.68, No.10 pp. 1475-1478, (2005). doi:10.1021/np050109q. 
  12. H. E. Lee, J. A. Kim, W. K. Whang, "Chemical Constituents of Smilax china L. Stems and Their Inhibitory Activities against Glycation, Aldose Reductase, alpha-Glucosidase, and Lipase", Molecules, Vol.22, No.3, pp. 451, (2017). doi:10.3390/molecules22030451. 
  13. J. H. Joo, M. H. Han, J. I. Kim, J. E. Kim, K. H. Jung, H. S. Oh, Y. S. Chung, H. J. An, J. D. Lee, G. S. Moon, "Antimicrobial Activity of Smilax china L. Root Extracts against the Acne-Causing Bacterium, Cutibacterium acnes, and Its Active Compounds", Molecules, Vol.27, No.23 pp. 8331, (2022). doi:10.3390/molecules27238331. 
  14. B. Kim, H. -E. Cho, S. H. Moon, H. -J. Ahn, S. Bae, H. -D. Cho, S. An, "Transdermal Delivery Systems in Cosmetics", Biomed. Dermat., Vol.4, No.10 (2020). doi:10.1186/s41702-020-0058-7. 
  15. S. F. Ng, J. J. Rouse, F. D. Sanderson, V. Meidan, G. M. Eccleston, "Validation of a Static Franz Diffusion Cell System for In Vitro Permeation Studies", AAPS PharmSciTech, Vol.11, No.3 pp. 1432-1441, (2010). doi:10.1208/s12249-010-9522-9. 
  16. I. Pulsoni, M. Lubda, M. Aiello, A. Fedi, M. Marzagalli, J. von Hagen, S. Scaglione, "Comparison Between Franz Diffusion Cell and a Novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models", SLAS Tech., Vol.27, No.3 pp. 161-171, (2022). doi: https://doi.org/10.1016/j.slast.2021.12.006.
  17. S.-F. Ng, J. Rouse, D. Sanderson, G. Eccleston, "A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells". Pharmaceutics, Vol.2, No.2 pp. 209-223, (2010). 
  18. R. Sawamura, H. Sakurai, N. Wada, Y. Nishiya, T. Honda, M. Kazui M., A. Kurihara, A, Shinagawa., T. Izumi. "Bioactivation of Loxoprofen to a Pharmacologically Active Metabolite and Its Disposition Kinetics in Human Skin", Biopharm. Drug Dispos. Vol.36, No.6 pp. 352-363. (2015). doi: 10.1002/bdd.1945.