DOI QR코드

DOI QR Code

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee (Electronics and Telecommunications Research Institute, Honam Research Division, AI Convergence Research Section) ;
  • Minji Kang (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Do Young Kim (School of Materials Science and Engineering, Pusan National University) ;
  • Hee Yoon Jang (School of Materials Science and Engineering, Pusan National University) ;
  • Ji-Won Park (R & D Center of JB Lab Corporation) ;
  • Tae-Wook Kim (Department of Flexible and Printable Electronics, Jeonbuk National University) ;
  • Jae-Min Hong (Soft Hybrid Materials Research Center, Korea Institute of Science and Technology) ;
  • Seoung-Ki Lee (School of Materials Science and Engineering, Pusan National University)
  • Received : 2024.04.14
  • Accepted : 2024.04.19
  • Published : 2024.07.01

Abstract

This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Keywords

Acknowledgement

This research was supported from the Ministry of Trade, Industry & Energy of Korea (0269589) and the Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2021M3H4A6A03103770).

References

  1. Z. Hui, L. Zhang, G. Ren, G. Sun, H. D. Yu, and W. Huang, Adv. Mater., 35, 2211202 (2023).  doi: https://doi.org/10.1002/adma.202211202 
  2. X. Zhang, Z. Hu, Q. Sun, X. Liang, P. Gu, J. Huang, and G. Zu, Angew. Chem. Int. Ed., 62, e202213952 (2023).  doi: https://doi.org/10.1002/anie.202213952 
  3. M. Khaouani, H. Bencherif, and A. Meddour, Trans. Electr. Electron. Mater., 23, 113 (2021).  doi: https://doi.org/10.1007/s42341-021-00328-x 
  4. K. I. Jang, S. Y. Han, S. Xu, K. E. Mathewson, Y. Zhang, J. W. Jeong, G. T. Kim, R. C. Webb, J. W. Lee, T. J. Dawidczyk, R. H. Kim, Y. M. Song, W. H. Yeo, S. Kim, H. Cheng, S. I. Rhee, J. Chung, B. Kim, H. U. Chung, D. Lee, Y. Yang, M. Cho, J. G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, and J. A. Rogers, Nat. Commun., 5, 4779 (2014).  doi: https://doi.org/10.1038/ncomms5779 
  5. M. Kim, K. Y. Ma, H. Kim, Y. Lee, J. H. Park, and H. S. Shin, Adv. Mater., 35, 2205520 (2023).  doi: https://doi.org/10.1002/adma.202205520 
  6. S. H. Kang, J. W. Jo, J. M. Lee, S. Moon, S. B. Shin, S. B. Choi, D. Byeon, J. Kim, M. G. Kim, Y. H. Kim, J. W. Kim, and S. K. Park, Nat. Commun., 15, 2814 (2024).  doi: https://doi.org/10.1038/s41467-024-47184-w 
  7. D. H. Kim, N. Lu, Y. Huang, and J. A. Rogers, MRS Bull., 37, 226 (2012).  doi: https://doi.org/10.1557/mrs.2012.36 
  8. I. S. Yoon, S. H. Kim, Y. Oh, B. K. Ju, and J. M. Hong, Sci. Rep., 10, 5036 (2020).  doi: https://doi.org/10.1038/s41598-020-61752-2 
  9. S. Gandla, S. Kang, J. Kim, Y. Yu, J. Kim, H. Lim, H. J. Kwon, S. M. Park, and S. Kim, IEEE Internet Things J., 11, 15656 (2024).  doi: https://doi.org/10.1109/JIOT.2024.3350022 
  10. G. Sun and H. Zhao, Trans. Electr. Electron. Mater., 24, 267 (2023).  doi: https://doi.org/10.1007/s42341-023-00447-7 
  11. P. Naik, A. Nayak, and S. K. Patri, Trans. Electr. Electron. Mater., 24, 149 (2023).  doi: https://doi.org/10.1007/s42341-022-00425-5 
  12. W. Lee, J. Woo, S. Lee, and H. Lee, Sens. Actuators, A, 367, 115026 (2024).  doi: https://doi.org/10.1016/j.sna.2024.115026 
  13. K. Sun, G. Wu, K. Liang, B. Sun, and J. Wang, Micromachines, 14, 1020 (2023).  doi: https://doi.org/10.3390/mi14051020 
  14. J. Kim, J. Im, J. Ko, S. Lee, D. Kwon, W. Shin, J. Hwang, R. H. Koo, W. Y. Choi, and J. H. Lee, Proc. 2023 International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2023).  doi: https://doi.org/10.1109/IEDM45741.2023.10413852 
  15. Z. W. Lin, S. L. Qi, and D. Z. Wu, J. Appl. Polym. Sci., 125, 3552 (2012).  doi: https://doi.org/10.1002/app.36240 
  16. H. K. Choi, A. Lee, M. Park, D. S. Lee, S. Bae, S. K. Lee, S. H. Lee, T. Lee, and T. W. Kim, ACS Nano, 15, 829 (2021).  doi: https://doi.org/10.1021/acsnano.0c07352 
  17. Y. Wang, P. Zhu, W. Li, X. Liu, H. Li, Y. Deng, and M. Tan, ACS Appl. Mater. Interfaces, 14, 12920 (2022).  doi: https://doi.org/10.1021/acsami.2c00542