DOI QR코드

DOI QR Code

A Study on Property Distribution of [011] Poled Mn:PIN-PMN-PT Single Crystals Grown by Bridgeman Method

Bridgeman 성장 [011] 분극 Mn:PIN-PMN-PT 압전단결정의 물성 분포 연구

  • Soohyun Lim (Maritime Technology Research Institute, Agency for Defense Development) ;
  • Yub Je (Maritime Technology Research Institute, Agency for Defense Development) ;
  • Yohan Cho (Maritime Technology Research Institute, Agency for Defense Development) ;
  • Sang-Goo Lee (IBULE PHOTONICS) ;
  • Hee-Seon Seo (Maritime Technology Research Institute, Agency for Defense Development)
  • 임수현 (국방과학연구소 해양기술연구원) ;
  • 제엽 (국방과학연구소 해양기술연구원) ;
  • 조요한 (국방과학연구소 해양기술연구원) ;
  • 이상구 ((주)아이블포토닉스) ;
  • 서희선 (국방과학연구소 해양기술연구원)
  • Received : 2024.01.15
  • Accepted : 2024.03.06
  • Published : 2024.07.01

Abstract

Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals, which exhibit improved phase transition temperatures and coercive field properties compared to Pb(In1/2Nb1/2)O3-Pb(Mg2/3Nb1/3)O3-PbTiO3 (PIN-PMN-PT) single crystals, are expected to be utilized in high-power acoustic transducers. Bridgeman method, growing single crystals along the axial direction from melt, is most widely used method for single crystal growth with large size and high quality. However, single crystal boules grown by the Bridgeman method demonstrate a PT compositional variation, giving rise a distribution of crystal structure and material properties along the growing axis. To employ piezoelectric single crystals grown by the Bridgeman method for acoustic transducers, it is essential to investigate their overall property distribution. In this study, the compositional distribution and property variation of Mn:PIN-PMN-PT single crystals grown by the Bridgeman method was investigated. Measured compositional distribution of PT was from 29% to 32.5% in the Rhombohedral crystal region of the boule. Two types of specimen, [011]-poled Mn:PIN-PMN-29PT and Mn:PIN-PMN-32PT single crystals, were fabricated and tested to obtain full property variation at both ends of the Rhombohedral crystal region. The properties related to the 32 directional vibration mode and the properties related to high-power driving were measured to confirm the overall distribution of properties by composition.

Keywords

Acknowledgement

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(912874001).

References

  1. S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo, and T. R. Shrout, J. Korean Ceram. Soc., 55, 419 (2018). doi: https://doi.org/10.4191/kcers.2018.55.5.12 
  2. L. M. Ewart, E. A. McLaughlin, H. C. Robinson, J. J. Stace, and A. Amin, IEEE Trans. Ultrason. Eng., 54, 2469 (2007). doi: https://doi.org/10.1109/TUFFC.2007.561 
  3. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, Prog. Mater. Sci., 68, 1 (2015). doi: https://doi.org/10.1016/j.pmatsci.2014.10.002 
  4. S. Zhang and F. Li, J. Appl. Phys., 111, 031301 (2012). doi: https://doi.org/10.1063/1.3679521 
  5. X. Huo, S. Zhang, G. Liu, R. Zhang, J. Luo, R. Sahul, W. Cao, and T. R. Shrout, J. Appl. Phys., 113, 074106 (2013). doi: https://doi.org/10.1063/1.4792661 
  6. F. Li, S. Zhang, D. Lin, J. Luo, Z. Xu, X. Wei, and T. R. Shrout, J. Appl. Phys., 109, 014108 (2011). doi: https://doi.org/10.1063/1.3530617 
  7. Y. Liu, Z. Xu, Z. Li, Y. Zhuang, Y. Tian, D. Hu, K. Song, and H. Guo, J. Alloys Compd., 742, 958 (2018). doi: https://doi.org/10.1016/j.jallcom.2018.01.027 
  8. K. Song, Q. Li, H. Guo, Q. Hu, Z. Li, F. Li, S. Fan, and Z. Xu, J. Alloys Compd., 851, 156145 (2021). doi: https://doi.org/10.1016/j.jallcom.2020.156145 
  9. E. Sun, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, Appl. Phys. Lett., 97, 032902 (2010). doi: https://doi.org/10.1063/1.3466906 
  10. K. K. Rajan, M. Shanthi, W. S. Chang, J. Jin, and L. C. Lim, Sens. Actuators, A, 133, 110 (2007). doi: https://doi.org/10.1016/j.sna.2006.03.036 
  11. S. Zhang and L. C. Lim, AIP Adv., 8, 115010 (2018). doi: https://doi.org/10.1063/1.5064418 
  12. Y. Je, M. S. Sim, Y. Cho, W. Lee, S. Lee, J. M. Lee, and H. S. Seo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 466 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.6.11 
  13. S. E. Park and T. R. Shrout, J. Appl. Phys., 82, 1804 (1997). doi: https://doi.org/10.1063/1.365983 
  14. T. Rojac, Commun. Mater., 4, 12 (2023). doi: https://doi.org/10.1038/s43246-023-00336-9 
  15. S. H. Lee, S. S. Lee, Y. Roh, H. Y. Lee, and J. H. Han, J. Korean Inst. Electr. Electron. Mater. Eng., 17, 31 (2004). doi: https://doi.org/10.4313/JKEM.2004.17.1.031 
  16. W. S. Kang, G. J. Lee, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 301 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.5.301 
  17. N. Luo, S. Zhang, Q. Li, Q. Yan, Y. Zhang, T. Ansell, J. Luo, and T. R. Shrout, J. Mater. Chem. C, 4, 4568 (2016). doi: https://doi.org/10.1039/c6tc00875e 
  18. S. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, Appl. Phys. Lett., 93, 122908 (2008). doi: https://doi.org/10.1063/1.2992081