참고문헌
- ABAQUS (2013) ABAQUS Reference Manual. Palo Alto, CA: ABAQUS.
- Ahmed, M.K. (2016), "Buckling behavior of a radially loaded corrugated orthotropic thin-elliptic cylindrical shell on an elastic foundation", Thin-Wall. Struct., 107, 90-100. https://doi.org/10.1016/j.tws.2016.06.006.
- Asadi, E., Wang, W. and Qatu, M.S. (2012), "Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94(2), 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011.
- Bakhti, K., Tounsi, A., Kaci, A., Bousahla, A.A., Houari, M.S.A. and Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/scs.2013.14.4.335.
- Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2013.14.4.335.
- Bui, T.Q. and Nguyen, M.N. (2011), "A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates", Struct. Eng. Mech., 39(4), 579-598. https://doi.org/10.12989/sem.2011.39.4.579.
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
- Draiche, K. and Tounsi, A. (2022), "A new refined hyperbolic shear deformation theory for laminated composite spherical shells", Struct. Eng. Mech., 84(6), 707-722. https://doi.org/10.12989/sem.2022.84.6.707.
- Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin-Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013.
- Duc, N.D., Tuan, N.D., Tran, P., Cong, P.H. and Nguyen, P.D. (2016), "Nonlinear stability of eccentrically stiffened S-FGM elliptical cylindrical shells in thermal environment", Thin-Wall. Struct., 108, 280-290, https://doi.org/10.1016/j.tws.2016.08.025.
- Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
- Ghavami, K. (1994), "Experimental study of stiffened plates in compression up to collapse", J. Construct. Steel Res., 28(2), 197-221. https://doi.org/10.1016/0143-974X(94)90043-4.
- Kabir, M. Z., &Poorveis, D. (2006). Buckling of discretely stringer-stiffened composite cylindrical shells under combined axial compression and external pressure. Scientia Iranica, 13(2).
- Kassegne, S.K. and Reddy, J.N. (1998), "Local behavior of discretely stiffened composite plates and cylindrical shells", Compos. Struct., 41(1), 13-26 https://doi.org/10.1016/S0263-8223(98)00006-3.
- Khajehdezfuly, A., Poorveis, D. and Nazarinia, S. (2023), "Comparison between linear and nonlinear axial buckling loads of FGM cylindrical panel with cutout", Int. J. Non-Linear Mech., 150, 104361. https://doi.org/10.1016/j.ijnonlinmec.2023.104361.
- Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum axial buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860 . https://doi.org/10.1016/j.compstruct.2012.04.018.
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22, 45-59. https://doi.org/10.12989/scs.2016.22.2.301.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001.
- Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.
- Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
- Li, C. and Wu, Z. (2015), "Buckling of 120 stiffened composite cylindrical shell under axial compression-Experiment and simulation", Compos. Struct., 128, 199-206. https://doi.org/10.1016/j.compstruct.2015.03.056.
- Li, Z.M. and Shen, H.S. (2008), "Postbuckling of shear-deformable anisotropic laminated cylindrical shells under axial compression", Int. J. Struct. Stab. Dyn., 8(03), 389-414 . https://doi.org/10.1142/S0219455408002715.
- Mahdy, W.M., Zhao, L., Liu, F., Pian, R., Wang, H. and Zhang, J. (2021), "Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads", Compos. Struct., 255, 112977. https://doi.org/10.1016/j.compstruct.2020.112977.
- Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
- Moradi, S., Poorveis, D. and Khajehdezfuly, A. (2011), "Geometrically nonlinear analysis of anisotropic laminated cylindrical panels with cut-out using spline finite strip method", In Proceeding of conference on the Advances in Structural Engineering and Mechanics, Seoul, South Korea.
- Najafizadeh, M.M., Hasani, A. and Khazaeinejad, P. (2009), "Mechanical stability of functionally graded stiffened cylindrical shells", Appl. Mathem. Modelling, 33(2), 1151-1157 https://doi.org/10.1016/j.apm.2008.01.009.
- Poorveis, D., Khajehdezfuly, A., Moradi, S. and Shirshekan, E. (2019), "A simple spline finite strip for buckling analysis of composite cylindrical panel with cutout", Latin Amer. J. Solids Struct., 16. http://dx.doi.org/10.1590/1679-78255535.
- Reddy, J.N. (2006), Theory and Analysis Of Elastic Plates and Shells. CRC press.
- Sadeghifar, M., Bagheri, M. and Jafari, A.A. (2010), "Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axia buckling load", Thin-Wall. Struct., 48(12), 979-988. https://doi.org/10.1016/j.tws.2010.07.006.
- Sadoune, M., Tounsi, A. and Houari, M.S.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321.
- Sambandam, C.T., Patel, B.P., Gupta, S.S., Munot, C.S. and Ganapathi, M. (2003), "Buckling characteristics of cross-ply elliptical cylinders under axial compression", Compos. Struct., 62(1), 7-17 https://doi.org/10.1016/S0263-8223(03)00079-5.
- Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T. V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
- Teng, J.G. and Hong, T. (1998), "Nonlinear thin shell theories for numerical buckling predictions", Thin-Wall. Struct., 31(1-3), 89-115. https://doi.org/10.1016/S0263-8231(98)00014-7.
- Wang, B., Yang, M., Zeng, D., Hao, P., Li, G., Liu, Y. and Tian, K. (2021), "Post-buckling behavior of stiffened cylindrical shell and experimental validation under non-uniform external pressure and axial compression", Thin-Wall. Struct., 161, 107481 . https://doi.org/10.1016/j.tws.2021.107481.
- Weller, T. and Singer, J. (1977), "Experimental studies on the buckling under axial compression of integrally stringer-stiffened circular cylindrical shells", https://doi.org/10.1115/1.3424163.