DOI QR코드

DOI QR Code

An accurate approach for buckling analysis of stringer stiffened laminated composite cylindrical shells under axial compression

  • Davood Poorveis (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Amin Khajehdezfuly (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Mohammad Reza Sardari (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, Shahid Chamran University of Ahvaz) ;
  • Shapour Moradi (Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz)
  • Received : 2024.01.28
  • Accepted : 2024.05.09
  • Published : 2024.06.10

Abstract

While the external axial compressive load is applied to only the shell edge of stringer-stiffened shell in the most of numerical and analytical previous studies (entitled as conventional approach), a part of external load is applied to the stringers in real conditions. It leads to decrease the accuracy of the axial buckling load calculated by the conventional eigenvalue analysis approach performed in the most of previous studies. In this study, the distribution of stress in the pre-buckling analysis was enhanced by applying the axial external compressive load to both shell and stringers to perform an accurate eigenvalue analysis of the stringer-stiffened composite shell. In this regard, a model was developed in FORTRAN environment to simulate the laminated stringer-stiffened shell under axial compressive load using finite strip method. The axial buckling load of the shell was obtained through eigenvalue analysis. A comparison was made between the results obtained from the model and those available in the previous studies to evaluate the validity of the results obtained from the model. Through a parametric study, the effects of different parameters such as stringer properties and composite layup on the buckling load of the shell under different loading patterns were investigated. The results indicated that in some cases, the axial buckling load obtained for the conventional approach used in the most of previous studies is significantly overestimated or underestimated due to neglecting the stringer in distribution of external load applied to the stringer-stiffened shell. According to the results obtained from the parametric study, some graphs were derived to show the accuracy of the axial buckling load obtained from the conventional approach utilized in the literature.

Keywords

References

  1. ABAQUS (2013) ABAQUS Reference Manual. Palo Alto, CA: ABAQUS.
  2. Ahmed, M.K. (2016), "Buckling behavior of a radially loaded corrugated orthotropic thin-elliptic cylindrical shell on an elastic foundation", Thin-Wall. Struct., 107, 90-100. https://doi.org/10.1016/j.tws.2016.06.006.
  3. Asadi, E., Wang, W. and Qatu, M.S. (2012), "Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories", Compos. Struct., 94(2), 494-500. https://doi.org/10.1016/j.compstruct.2011.08.011.
  4. Bakhti, K., Tounsi, A., Kaci, A., Bousahla, A.A., Houari, M.S.A. and Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/scs.2013.14.4.335.
  5. Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2013.14.4.335.
  6. Bui, T.Q. and Nguyen, M.N. (2011), "A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates", Struct. Eng. Mech., 39(4), 579-598. https://doi.org/10.12989/sem.2011.39.4.579.
  7. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  8. Draiche, K. and Tounsi, A. (2022), "A new refined hyperbolic shear deformation theory for laminated composite spherical shells", Struct. Eng. Mech., 84(6), 707-722. https://doi.org/10.12989/sem.2022.84.6.707.
  9. Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin-Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013.
  10. Duc, N.D., Tuan, N.D., Tran, P., Cong, P.H. and Nguyen, P.D. (2016), "Nonlinear stability of eccentrically stiffened S-FGM elliptical cylindrical shells in thermal environment", Thin-Wall. Struct., 108, 280-290, https://doi.org/10.1016/j.tws.2016.08.025.
  11. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  12. Ghavami, K. (1994), "Experimental study of stiffened plates in compression up to collapse", J. Construct. Steel Res., 28(2), 197-221. https://doi.org/10.1016/0143-974X(94)90043-4.
  13. Kabir, M. Z., &Poorveis, D. (2006). Buckling of discretely stringer-stiffened composite cylindrical shells under combined axial compression and external pressure. Scientia Iranica, 13(2).
  14. Kassegne, S.K. and Reddy, J.N. (1998), "Local behavior of discretely stiffened composite plates and cylindrical shells", Compos. Struct., 41(1), 13-26 https://doi.org/10.1016/S0263-8223(98)00006-3.
  15. Khajehdezfuly, A., Poorveis, D. and Nazarinia, S. (2023), "Comparison between linear and nonlinear axial buckling loads of FGM cylindrical panel with cutout", Int. J. Non-Linear Mech., 150, 104361. https://doi.org/10.1016/j.ijnonlinmec.2023.104361.
  16. Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum axial buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860 . https://doi.org/10.1016/j.compstruct.2012.04.018.
  17. Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22, 45-59. https://doi.org/10.12989/scs.2016.22.2.301.
  18. Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., 23(1), 1-16. https://doi.org/10.12989/scs.2017.23.1.001.
  19. Khayat, M., Poorveis, D., Moradi, S. and Hemmati, M. (2016), "Buckling of thick deep laminated composite shell of revolution under follower forces", Struct. Eng. Mech., 58(1), 59-91. https://doi.org/10.12989/sem.2016.58.1.059.
  20. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.
  21. Li, C. and Wu, Z. (2015), "Buckling of 120 stiffened composite cylindrical shell under axial compression-Experiment and simulation", Compos. Struct., 128, 199-206. https://doi.org/10.1016/j.compstruct.2015.03.056.
  22. Li, Z.M. and Shen, H.S. (2008), "Postbuckling of shear-deformable anisotropic laminated cylindrical shells under axial compression", Int. J. Struct. Stab. Dyn., 8(03), 389-414 . https://doi.org/10.1142/S0219455408002715.
  23. Mahdy, W.M., Zhao, L., Liu, F., Pian, R., Wang, H. and Zhang, J. (2021), "Buckling and stress-competitive failure analyses of composite laminated cylindrical shell under axial compression and torsional loads", Compos. Struct., 255, 112977. https://doi.org/10.1016/j.compstruct.2020.112977.
  24. Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022), "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
  25. Moradi, S., Poorveis, D. and Khajehdezfuly, A. (2011), "Geometrically nonlinear analysis of anisotropic laminated cylindrical panels with cut-out using spline finite strip method", In Proceeding of conference on the Advances in Structural Engineering and Mechanics, Seoul, South Korea.
  26. Najafizadeh, M.M., Hasani, A. and Khazaeinejad, P. (2009), "Mechanical stability of functionally graded stiffened cylindrical shells", Appl. Mathem. Modelling, 33(2), 1151-1157 https://doi.org/10.1016/j.apm.2008.01.009.
  27. Poorveis, D., Khajehdezfuly, A., Moradi, S. and Shirshekan, E. (2019), "A simple spline finite strip for buckling analysis of composite cylindrical panel with cutout", Latin Amer. J. Solids Struct., 16. http://dx.doi.org/10.1590/1679-78255535.
  28. Reddy, J.N. (2006), Theory and Analysis Of Elastic Plates and Shells. CRC press.
  29. Sadeghifar, M., Bagheri, M. and Jafari, A.A. (2010), "Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axia buckling load", Thin-Wall. Struct., 48(12), 979-988. https://doi.org/10.1016/j.tws.2010.07.006.
  30. Sadoune, M., Tounsi, A. and Houari, M.S.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321.
  31. Sambandam, C.T., Patel, B.P., Gupta, S.S., Munot, C.S. and Ganapathi, M. (2003), "Buckling characteristics of cross-ply elliptical cylinders under axial compression", Compos. Struct., 62(1), 7-17 https://doi.org/10.1016/S0263-8223(03)00079-5.
  32. Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T. V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.
  33. Teng, J.G. and Hong, T. (1998), "Nonlinear thin shell theories for numerical buckling predictions", Thin-Wall. Struct., 31(1-3), 89-115. https://doi.org/10.1016/S0263-8231(98)00014-7.
  34. Wang, B., Yang, M., Zeng, D., Hao, P., Li, G., Liu, Y. and Tian, K. (2021), "Post-buckling behavior of stiffened cylindrical shell and experimental validation under non-uniform external pressure and axial compression", Thin-Wall. Struct., 161, 107481 . https://doi.org/10.1016/j.tws.2021.107481.
  35. Weller, T. and Singer, J. (1977), "Experimental studies on the buckling under axial compression of integrally stringer-stiffened circular cylindrical shells", https://doi.org/10.1115/1.3424163.