DOI QR코드

DOI QR Code

Effects of Cell-Cell Contact on Vibration Loading-induced Browning of 3T3-L1 Preadipocytes

진동 자극을 통한 3T3-L1 지방전구세포의 갈변화에서 세포 간 접촉의 영향

  • Heejin Noh (Department of Biomedical Engineering, Yonsei University) ;
  • Yong Chan Jung (Department of Biomedical Engineering, Yonsei University) ;
  • Gayoung Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Eunyeong Moon (Department of Biomedical Engineering, Yonsei University) ;
  • Eun Mi Lee (Department of Biomedical Engineering, Yonsei University) ;
  • Chi Hyun Kim (Department of Biomedical Engineering, Yonsei University)
  • 노희진 (연세대학교 보건과학대학 의공학부) ;
  • 정용찬 (연세대학교 보건과학대학 의공학부) ;
  • 김가영 (연세대학교 보건과학대학 의공학부) ;
  • 문은영 (연세대학교 보건과학대학 의공학부) ;
  • 이은미 (연세대학교 보건과학대학 의공학부) ;
  • 김지현 (연세대학교 보건과학대학 의공학부)
  • Received : 2023.12.29
  • Accepted : 2024.02.19
  • Published : 2024.02.28

Abstract

The prevalence of obesity and its complications is steadily increasing worldwide. It is essential to understand cellular level metabolism and microenvironment to treat diseases related to lipid metabolism. Mechanical loading can activate signaling pathway by stimulating cells, especially vibration loading known to inhibit adipogenesis, so it has been studied as a treatment for obesity. Also, vibration loading can affect the inside of the human body non-invasively. Another clue to reducing adipose tissue is browning, which means that white adipocytes changes to brown adipocyte. In this study, we design and developed a device that that can control cell-cell contact, and vibration simulation device. Using these two devices, we investigated responses of cells to vibration loading. Protein expression associated with browning and adipogenesis were analyzed. In conclusion, vibration loading can be transmitted through cell contact and loading applied to the cells can induce browning and inhibit adipogenesis of preadipocytes. These results suggest the possibility that vibrations could be a treatment for obesity.

Keywords

References

  1. Roberts KJ, Binns HJ, Vincent C, Koenig MD. A scoping review: Family and child perspectives of clinic-based obesity treatment. J Pediatr Nurs. 2021;5756-72.
  2. Malnick SD, Knobler H. The medical complications of obesity. QJM. 2006;99(9):565-579. https://doi.org/10.1093/qjmed/hcl085
  3. Okay DM, Jackson PV, Marcinkiewicz M, Papino MN. Exercise and obesity. Prim Care. 2009;36(2):379-393. https://doi.org/10.1016/j.pop.2009.01.008
  4. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9(6):465-482. https://doi.org/10.1038/nrd3138
  5. Goldmann WH. Mechanotransduction in cells 1. Cell Biol Int. 2012;36(6):567-570.
  6. Iqbal J, Zaidi M. Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 2005;328(3):751-755. https://doi.org/10.1016/j.bbrc.2004.12.087
  7. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev. 2001;81(2):685-740. https://doi.org/10.1152/physrev.2001.81.2.685
  8. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63-73. https://doi.org/10.1038/nrm2597
  9. Ren Z, Lan Q, Chen Y, Chan YWJ, Mahady GB, Lee SM-Y. Low-magnitude high-frequency vibration decreases body weight gain and increases muscle strength by enhancing the p38 and AMPK pathways in db/db mice. Diabetes Metab Syndr Obes. 2020;13979.
  10. Oh ES, Seo YK, Yoon HH, Cho H, Yoon MY, Park JK. Effects of sub-sonic vibration on the proliferation and maturation of 3T3-L1 cells. Life Sci. 2011;88(3-4):169-177. https://doi.org/10.1016/j.lfs.2010.11.007
  11. Sun C, Zeng R, Cao G, Song Z, Zhang Y, Liu C. Vibration training triggers brown adipocyte relative protein expression in rat white adipose tissue. Biomed Res Int. 2015.
  12. Choi YK, Cho H, Seo YK, Yoon HH, Park JK. Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem cells into neural cells. Life Sci. 2012;91(9-10):329-337. https://doi.org/10.1016/j.lfs.2012.07.022
  13. Zhao Q, Lu Y, Yu H, Gan X. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS One. 2017;12(3):e0172954.
  14. Chen X, He F, Zhong DY, Luo ZP. Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. Biomed Res Int. 2015.
  15. Baskan O, Sarigil O, Mese G, Ozcivici E. Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. In Vitro Cell Dev Biol Anim. 2022;58(6):452-461. https://doi.org/10.1007/s11626-022-00696-5
  16. Lee YH, Lee SH, Jung H. Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes. J Biomed Eng Res. 2021;42(1):18-24.
  17. Havel PJ. Role of adipose tissue in body-weight regulation: mechanisms regulating leptin production and energy balance. Proc Nutr Soc. 2000;59(3):359-371. https://doi.org/10.1017/S0029665100000410
  18. Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398(2):153-168. https://doi.org/10.1042/BJ20060402
  19. Nedergaard J, Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab. 2014;20(3):396-407. https://doi.org/10.1016/j.cmet.2014.07.005
  20. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24-36. https://doi.org/10.1038/nrendo.2013.204
  21. Osuna-Prieto FJ, Martinez-Tellez B, Segura-Carretero A, Ruiz JR. Activation of brown adipose tissue and promotion of white adipose tissue browning by plant-based dietary components in rodents: a systematic review. Adv Nutr. 2021;12(6):2147-2156. https://doi.org/10.1093/advances/nmab084
  22. Cheong LY, Xu A. Intercellular and inter-organ crosstalk in browning of white adipose tissue: molecular mechanism and therapeutic complications. J Mol Cell Biol. 2021;13(7):466-479. https://doi.org/10.1093/jmcb/mjab038
  23. Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced 'browning'of adipose tissues. Metabolism. 2018;8163-70.
  24. Martinez-Sanchez N, Moreno-Navarrete JM, Contreras C. Thyroid hormones induce browning of white fat. J Endocrinol. 2017;232(2):351-362. https://doi.org/10.1530/JOE-16-0425
  25. Elsen M, Raschke S, Eckel J. Browning of white fat: does irisin play a role in humans. J Endocrinol. 2014;222(1):R25-38. https://doi.org/10.1530/JOE-14-0189
  26. Rapid Analysis Of Human Adipose- Derived Stem Cells and 3t3-l1 Differentiation Toward Adipocytes Using The Scepter- TM 2.0 Cell Counter. Biotechniques. 2012;53(2):109-111. https://doi.org/10.2144/000113910
  27. Saha S, Lakes RS. The effect of soft tissue on wave-propagation and vibration tests for determining the in vivo properties of bone. J Biomech. 1977;10(7):393-401. https://doi.org/10.1016/0021-9290(77)90015-X
  28. Yuan Y, Gao J, Ogawa R. Mechanobiology and mechanotherapy of adipose tissue-effect of mechanical force on fat tissue engineering. Plast Reconstr Surg Glob Open. 2015;3(12).
  29. Kelly LJ, Vicario PP, Thompson GM. Peroxisome proliferator-activated receptors γ and α mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology. 1998;139(12):4920-4927. https://doi.org/10.1210/endo.139.12.6384
  30. Lee JY, Takahashi N, Yasubuchi M. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Physiol Cell Physiol. 2012;302(2):C463-C472. https://doi.org/10.1152/ajpcell.00010.2011
  31. Jiang WG, Douglas-Jones A, Mansel RE. Expression of peroxisome-proliferator activated receptor-gamma (PPARγ) and the PPARγ co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer. 2003;106(5):752-757. https://doi.org/10.1002/ijc.11302
  32. MacDougald OA, Cornelius P, Liu R, Lane MD. Insulin Regulates Transcription of the CCAAT/Enhancer Binding Protein (C/EBP) α, β, and δ Genes in Fully-differentiated 3T3-L1 Adipocytes (∗). J Biol Chem. 1995;270(2):647-654. https://doi.org/10.1074/jbc.270.2.647
  33. Janani C, Kumari BR. PPAR gamma gene-a review. Diabetes Metab Syndr. 2015;9(1):46-50. https://doi.org/10.1016/j.dsx.2014.09.015
  34. Wu Z, Xie Y, Bucher N, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995;9(19):2350-2363. https://doi.org/10.1101/gad.9.19.2350