Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1C1C1010063, RS-2023-00236157).
References
- Gentil M, Pollak P, Perret J. Parkinsonian dysarthria. Rev Neurol. 1995;151(2):105-112.
- Rudzicz F. Articulatory knowledge in the recognition of dysarthric speech. IEEE Trans Audio Speech Lang Process. 2011;19(4):947-960. https://doi.org/10.1109/TASL.2010.2072499
- Joshy AA, Rajan R. Dysarthria severity classification using multi-head attention and multi-task learning. Speech Commun. 2023;147:1-11. https://doi.org/10.1016/j.specom.2022.12.004
- Schlenck KJ, Bettrich R, Willmes K. Aspects of disturbed prosody in dysarthria. Clin Linguist Phon. 1993;7(2):119-128. https://doi.org/10.3109/02699209308985549
- Rampello L, Rampello L, Patti F, Zappia M. When the word doesn't come out: A synthetic overview of dysarthria. J Neurol Sci. 2016;369:354-360. https://doi.org/10.1016/j.jns.2016.08.048
- Kent RD, Weismer G, Kent JF, Vorperian HK, Duffy JR. Acoustic studies of dysarthric speech: Methods, progress, and potential.J Commun Disord. 1999;32(3):141-186. https://doi.org/10.1016/S0021-9924(99)00004-0
- Robertson SJ. Robertson dysarthria profile. Buckinghamshire: Winslow. 1982.
- Enderby P. Frenchay dysarthria assessment. Int J Lang Commun Disord. 1980;15(3):165-173. https://doi.org/10.3109/13682828009112541
- Drummond SS. Dysarthria examination battery. Tucson: Communication Skill Builders. 1993.
- Shriberg LD, Kwiatkowski J. Phonological disorders III: A procedure for assessing severity of involvement. Journal of speech and Hearing Disorders. 1982;47(3): 256-270. https://doi.org/10.1044/jshd.4703.256
- Kim YH, Kim WH, Kim HG. A study on acoustic characteristics of dysarthria in relation to the underlying etiology. Journal of Korean Academy of Rehabilitation Medicine. 1994;18(4):773-779.
- Lee JS, Lee JY, Kim SH. Effect of articulation abilities on the articulator strength training by IOPI of spasticity dysarthric speech. Therapeutic Science for Rehabilitation. 2020;9(1):91-99. https://doi.org/10.22683/TSNR.2020.9.1.091
- Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-29. https://doi.org/10.1038/s41591-018-0316-z
- Song YH, Ryu GH. The innovative medical devices using big data and artificial intelligence: Focusing on the cases of Korea, the United States, and Europe. J Biomed Eng Res. 2023;44(4):264-274.
- Lee YH, Kim YJ, Kim KG. A performance comparison study of lesion detection model according to gastroscopy image quality. J Biomed Eng Res. 2023;44(2):118-124.
- Kadi KL, Selouani SA, Boudraa B, Boundraa M. Discriminative prosodic features to assess the dysarthria severity levels. Proceedings of the World Congress on Engineering. 2013;3:1-5.
- Kadi KL, Selouani SA, Boudraa B, Boundraa M. Fully automated speaker identification and intelligibility assessment in dysarthria disease using auditory knowledge. Biocybern Biomed Eng. 2016;36(1):233-247. https://doi.org/10.1016/j.bbe.2015.11.004
- Narendra NP, Alku P. Dysarthric speech classification using glottal features computed from non-words, words and sentences. Interspeech. 2018; 3403-3407.
- Rudzicz F, Namasivayam AK, Wolff T. The TORGO database of acoustic and articulatory speech from speakers with dysarthria. Lang Resour Eval. 2012;46:523-541 https://doi.org/10.1007/s10579-011-9145-0
- Kim H, Hasegawa-Johnson M, Perlman A, Gunderson J, Huang TS, Watkin K, Frame S. Dysarthric speech database for universal access research. Ninth Annual Conference of the International Speech Communication Association. 2008.
- Bhat C, Strik H. Automatic assessment of sentence-level dysarthria intelligibility using BLSTM. IEEE J Sel Top Signal Process. 2020;14(2):322-330. https://doi.org/10.1109/JSTSP.2020.2967652
- Joshy AA, Rajan R. Automated dysarthria severity classification: A study on acoustic features and deep learning techniques. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1147-1157. https://doi.org/10.1109/TNSRE.2022.3169814
- Gupta S, Patil AT, Purohit M, Parmar M, Patel M, Patil HA, Guido RC. Residual neural network precisely quantifies dysarthria severity-level based on short-duration speech segments. Neural Netw. 2021;139:105-117. https://doi.org/10.1016/j.neunet.2021.02.008
- Suhas BN, Mallela J, Illa A, Yamini BK, Atchayaram N, Yadav R, Gope D, Ghosh PK. Speech task based automatic classification of ALS and Parkinson's Disease and their severity using log Mel spectrograms. 2020 international conference on signal processing and communications(SPCOM). 2020; 1-5.
- https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=608. Accessed on 27 Dec 2023.
- Douglas O' Shaughnessy, Speech Communication: human and machine. Wesley-IEEE Press. 1987.
- Yacouby R, Axman D. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. Proceedings of the first workshop on evaluation and comparison of NLP systems. 2020; 79-91.