Acknowledgement
The author is grateful to the anonymous reviewers for their careful reading of the paper and their suggestions and corrections.
References
- L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Ded. 121 (2006), 113-127.
- L. J. Alias and S.M.B. Kashani, Hypersurfaces in space forms satisfying the condition Lkx = Ax + b, Taiwanese J. of Math. 14 (2010), no. 5, 1957-1977.
- R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, Sufaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Pura Appl. (4) 193 (2014), no. 2, 529-550. https://doi.org/10.1007/s10231-012-0289-3
- M. Do Carmo and M. Dajczer, Rotation Hypersurfaces in Spaces of Constant Curvature, Trans. Amer. Math. Soc. 77 (1983), 685-709. https://doi.org/10.1090/S0002-9947-1983-0694383-X
- J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. https://doi.org/10.2307/2373037
- D. Fetcu, C. Oniciuc, and A. L. Pinheiro, CMC biconservative surfaces in 𝕊n × ℝ and ℍn × ℝ, J. Math. Anal. Appl. 425 (2015), 588-609. https://doi.org/10.1016/j.jmaa.2014.12.051
- Y. Fu and N.C. Turgay, Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowaski 4-space, Inter. J. Math. 27 (2016), no. 5, 1650041.
- R.S. Gupta, Biconservative hypersurfaces in Euclidean 5-space, Bull. Iran. Math. Soc., 45 (2019), 1117-1133. https://doi.org/10.1007/s41980-018-0188-5
- T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995) 145-169. https://doi.org/10.1002/mana.19951720112
- G. Y. Jiang, The conservation law for 2-harmonic maps between Riemannian manifolds, Acta Math. Sin. 30 (1987), 220-225.
- S. M. B. Kashani, On some L1-finite type (hyper)surfaces in ℝn+1, Bull. Korean Math. Soc. 46 (2009), no. 1, 35-43. https://doi.org/10.4134/BKMS.2009.46.1.035
- S. Nistor and C. Oniciuc, On the uniqueness of complete biconservative surfaces in 3-dimensional space forms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 3, 1565-1587.
- B. O'Neill, Semi-Riemannian Geometry with Applicatins to Relativity, Acad. Press Inc, 1983.
- F. Pashaie and S. M. B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx = Ax + b, Bull. Iran. Math. Soc. 39 (2013), no. 1, 195-213.
- R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 (1973), no. 3, 465-477.
- N. C. Turgay, H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces, Ann. di Mat. Pura Appl. 194 (2015), no. 6, 1795-1807. https://doi.org/10.1007/s10231-014-0445-z
- N. C. Turgay and A. Upadhyay, On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr. 292 (2019), no. 4, 905-921. https://doi.org/10.1002/mana.201700328
- A. Upadhyay and N. C. Turgay, A classification of biconservative hypersurfaces in a pseudo-Euclidean space, J. Math. Anal. Appl. 444 (2016), 1703-1720. https://doi.org/10.1016/j.jmaa.2016.07.053
- G. Wei, Complete hypersurfaces in a Eculidean space Rn+1 with constant mth mean curvature, Diff. Geom. Appl. 26 (2008), 298-306. https://doi.org/10.1016/j.difgeo.2007.11.021