DOI QR코드

DOI QR Code

ON C-BICONSERVATIVE HYPERSURFACES OF NON-FLAT RIEMANNIAN 4-SPACE FORMS

  • Received : 2023.08.20
  • Accepted : 2023.11.23
  • Published : 2024.06.25

Abstract

In this manuscript, the hypersurfaces of non-flat Riemannian 4-space forms are considered. A hypersurface of a 4-dimensional Riemannian space form defined by an isometric immersion 𝐱 : M3 → 𝕄4(c) is said to be biconservative if it satisfies the equation (∆2𝐱 ) = 0, where ∆ is the Laplace operator on M3 and ⊤ stands for the tangent component of vectors. We study an extended version of biconservativity condition on the hypersurfaces of the Riemannian standard 4-space forms. The C-biconservativity condition is obtained by substituting the Cheng-Yau operator C instead of ∆. We prove that C-biconservative hypersurfaces of Riemannian 4-space forms (with some additional conditions) have constant scalar curvature.

Keywords

Acknowledgement

The author is grateful to the anonymous reviewers for their careful reading of the paper and their suggestions and corrections.

References

  1. L. J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Ded. 121 (2006), 113-127.
  2. L. J. Alias and S.M.B. Kashani, Hypersurfaces in space forms satisfying the condition Lkx = Ax + b, Taiwanese J. of Math. 14 (2010), no. 5, 1957-1977.
  3. R. Caddeo, S. Montaldo, C. Oniciuc, and P. Piu, Sufaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Pura Appl. (4) 193 (2014), no. 2, 529-550. https://doi.org/10.1007/s10231-012-0289-3
  4. M. Do Carmo and M. Dajczer, Rotation Hypersurfaces in Spaces of Constant Curvature, Trans. Amer. Math. Soc. 77 (1983), 685-709. https://doi.org/10.1090/S0002-9947-1983-0694383-X
  5. J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. https://doi.org/10.2307/2373037
  6. D. Fetcu, C. Oniciuc, and A. L. Pinheiro, CMC biconservative surfaces in 𝕊n × ℝ and ℍn × ℝ, J. Math. Anal. Appl. 425 (2015), 588-609. https://doi.org/10.1016/j.jmaa.2014.12.051
  7. Y. Fu and N.C. Turgay, Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowaski 4-space, Inter. J. Math. 27 (2016), no. 5, 1650041.
  8. R.S. Gupta, Biconservative hypersurfaces in Euclidean 5-space, Bull. Iran. Math. Soc., 45 (2019), 1117-1133. https://doi.org/10.1007/s41980-018-0188-5
  9. T. Hasanis, T. Vlachos, Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr. 172 (1995) 145-169. https://doi.org/10.1002/mana.19951720112
  10. G. Y. Jiang, The conservation law for 2-harmonic maps between Riemannian manifolds, Acta Math. Sin. 30 (1987), 220-225.
  11. S. M. B. Kashani, On some L1-finite type (hyper)surfaces in ℝn+1, Bull. Korean Math. Soc. 46 (2009), no. 1, 35-43. https://doi.org/10.4134/BKMS.2009.46.1.035
  12. S. Nistor and C. Oniciuc, On the uniqueness of complete biconservative surfaces in 3-dimensional space forms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 3, 1565-1587.
  13. B. O'Neill, Semi-Riemannian Geometry with Applicatins to Relativity, Acad. Press Inc, 1983.
  14. F. Pashaie and S. M. B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx = Ax + b, Bull. Iran. Math. Soc. 39 (2013), no. 1, 195-213.
  15. R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geom. 8 (1973), no. 3, 465-477.
  16. N. C. Turgay, H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces, Ann. di Mat. Pura Appl. 194 (2015), no. 6, 1795-1807. https://doi.org/10.1007/s10231-014-0445-z
  17. N. C. Turgay and A. Upadhyay, On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr. 292 (2019), no. 4, 905-921. https://doi.org/10.1002/mana.201700328
  18. A. Upadhyay and N. C. Turgay, A classification of biconservative hypersurfaces in a pseudo-Euclidean space, J. Math. Anal. Appl. 444 (2016), 1703-1720. https://doi.org/10.1016/j.jmaa.2016.07.053
  19. G. Wei, Complete hypersurfaces in a Eculidean space Rn+1 with constant mth mean curvature, Diff. Geom. Appl. 26 (2008), 298-306. https://doi.org/10.1016/j.difgeo.2007.11.021