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ON C-BICONSERVATIVE HYPERSURFACES OF NON-FLAT
RIEMANNIAN 4-SPACE FORMS

FIROOZ PASHAIE

Abstract. In this manuscript, the hypersurfaces of non-flat Riemannian
4-space forms are considered. A hypersurface of a 4-dimensional Rie-
mannian space form defined by an isometric immersion x : M3 — M*(c)
is said to be biconservative if it satisfies the equation (A%2x)T = 0, where
A is the Laplace operator on M3 and T stands for the tangent component
of vectors. We study an extended version of biconservativity condition
on the hypersurfaces of the Riemannian standard 4-space forms. The
C-biconservativity condition is obtained by substituting the Cheng-Yau
operator C instead of A. We prove that C-biconservative hypersurfaces
of Riemannian 4-space forms (with some additional conditions) have con-
stant scalar curvature.

1. Introduction

The subject of biconservative submanifolds is an interesting research topic
in mathematical physics, which has been started by Eells and Sampson and
followed by Jiang ([5, 10]). From the physical points of view, we deal with the
bienergy functional and its critical points arisen form the tension field. In geo-
metric context, the subject of biconservative submanifolds has received much
attentions. In 1995, Hasanis and Vlachos have classified the biconservative hy-
persurfaces (namely, H-hypersurfaces) of 3 and 4 dimensional Euclidean spaces
([9]). The notion of biconservative submanifold in an arbitrary manifold (not
only in Euclidean spaces) has been introduced for the first time in [3]. The full
classification of biconservative surfaces in 3-dimensional space forms was done
in [12].

In 2015, Turgay has studied the H-hypersurfaces with 3 distinct principal
curvatures in the Euclidean spaces ([16]). Also, the constant mean curvature
biconservative surfaces in S” x R and H"” x R has been studied in [6]. In
2019, Gupta studied the biconservative hypersurfaces in Euclidean 5-space ([8]).
Also, the biconservative hypersurfaces in Riemannian 4-space forms have been
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classified by Turgay and Upadhyay ([17]). In this paper, we study the C-
biconservativity condition on the hypersurfaces of Riemannian 4-space forms.
A hypersurface M3 of M*(c) is said to be C-biconservative if it satisfies the
condition

9
(1) No(VHy) — Ni(VH,) = S HyVH,.

Here, N; and Ny are the first and second Newton transformations (respec-
tively),and H; and Hs are the ordinary and second mean curvatures on M3
defined by H; = (Hl +ro+k3) and Hy = (K1H2+I€1K3+H2K3) (respectively),
where k1, ko and k3 are the principal curvatures of M?3.

We show that the C-biconservative hypersurfaces of M?*(c) with constant
ordinary mean curvature have constant scalar curvature.

2. Preliminaries

We recall some notations and formulae from [1, 2, 11, 13, 19]. The 4-
dimensional Riemannian standard space form M*(c) of curvature c is

(
St=SY1)CES  (ifc=1)
M4(c) = { E* Ei 0)

H* = H4(-1) C L? ~1).

As usual, EF is the Euclidean k-space (for each natural number k) with dot
product (v, w) = Zle vjw;. The Euclidean k-space equipped with the Lorentz
product defined by (v,w) = —vjw; + Z?:z viw; (for v,w € RF) gives the
Lorentz-Minkowski k-space L*. For r > 0,

sk(r) = {v e EF (v, v) = r?}
denotes the Euclidean k-sphere of radius r and curvature 1/r2, and
H*(—r) = {v € L*(v,v) = =% v; > 0}

denotes the hyperbolic k-space of radius —r and curvature —1/72.

We consider a hypersurface M? in M*(c) as a 3-dimensional submanifold
isometrically immersed by a map x : M3 — M*(c). The notation y(M?) stands
for the set of smooth tangent vector fields on M?3. The symbols V and V denote
the Levi-Civita connections on M3 and M*(c), respectively. Also, V° denotes
the Levi-Civita connection on E° or L°. The Weingarten formula on M? is

VyW = VyW + (SV,W)n,

for each V,W € x(M?3), where S is the shape operator of M?3 associated to a
unit normal vector field n on M3. Furthermore, in the case |c| = 1, M*(c) is a
4-hyperquadric in E° or IL?, with the unit normal vector field x and the Gauss
formula VoW = Vi W — ¢(V, W)x.
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Denoting the eigenvalues of S (i.e. the principal curvatures of M) by
K1, K2, k3 on M, we define the jth elementary symmetric function as

S5 = E Hil...,‘iij,

1<i1<...<i;<n

and the jth mean curvature of M as (3)H; = s; (for instance, see [1] and
[2]). In special case j = 1, H; is the ordinary mean curvature H. The second
mean curvature Hs and the normalized scalar curvature R satisfy the equality
Hy:=n(n—1)(1 - R).

The hypersurface M? in M*(c) is called j-minimal if its (j + 1)th mean
curvature H;, is identically zero.

Also, we apply the Newton map on M?3 by expression
(2) No=1I, Ny = —s11+S, N22821—815+527

where I is the identity map. If e, es and e are the eigenvectors of S(p) cor-
responding to the eigenvalues k1(p), k2(p) and k3(p), respectively, then they
are also the eigenvectors of N;(p) with corresponding eigenvalues given by

H11 = —R2 — K3, 2,1 = —K1 — K3, U3,1 = —K1 — K2, 1,2 = K2K3, U2,2 = K1K3,
H32 = Ki1k2.
We have the following formulae for the Newton transformations:
tr(N;) = ¢;Hj, tr(SoN;) = ¢;jHjp,

3
( ) tT(SQONl) :9H1H2—3H3, t’I“(S2ON2) :3]{1}137

where j =0,1,2, co = c3 =3 and ¢; = 6.

Now, we consider the second-order linear differential operator C : C*°(M?3) —
C>®(M?3) given by C(f) = tr(Ny o V2f), where, V2f : x(M) — x(M) denotes
the self-adjoint linear operator metrically equivalent to the Hessian of f which
is given for every vector fields X,Y € x(M?), by

(V2F(X),Y) = (Vx(V]),Y).
In other words, C(f) is given by C(f) = E?Zl wir(eeif —Ve,eif). So, we get
Cn = —3grad(Hs) — (9H1Hy — 3H3)n + 6¢Hox,

and

C?x = —54H,V Hy + 12N, VH, — 12N, VH,
(4) +6 (C(Hs) — 9H1Hj + 3HyH3 — 6¢cH1Hs) n

—6¢ (C(H,) — 6Hj — 6cHY) x
By definition, M3 is called C-biconservative if x satisfies (C?x)T = 0 (i.e the
condition (1)).

According to (local) orthonormal tangent frame {e,,}i<m<s in R%, and
associated co-frame {wy, }1<m<4, Where e1, ez, e3 are tangent to M and ey is
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positively normal to M. The structure equations of R* are

4 4

dwyg = E waB Awp, waB +wpa =0, dwap = E wac NWeB-
B=1 c=1

3
Of course, we have wy =0 and 0 = dwy = Y, wy; Aw; on M.
i=1
Using the well-known Cartan Lemma, we have functions h;; such that h;; =
hji and

3
(5) Wy = Z hijwj.
j=1

4
Since the second fundamental form of M is B = ). h;jw;wjes, the mean
ij=1
3
curvature H has the simple form H = § > h;;. Hence, from (5) we can get
i=1
the structure equations as (see [19])
3
dw; = Zwij AWy, Wij +wj; = 0,
j=1
3 13
dwij = ;wik Nwij — 5 k;1 Rijklwk A wi.

Also, we have the Gauss equation Rk = (hikhj — hahji), where R, 5, stand
for the components of the tensor of Riemannian curvature on M. Finally, we
have

(6) Z hijrwy = dhij + Z hijwii + Z hikwij,
% % %

where h;ji, is the covariant derivative of h;;. Thus, by exterior differentiation
of (5), we obtain the Codazzi equation h;jr = hs;. One can choose eq, ez, e3
such that h;; = K;0;;. On the other hand, the Levi-Civita connection of M 3
satisfies

Ve = Z wijk(€i)er,
k

and we have
ei(kj) = wij(e;) (ki — Kj),
wij(er) (ki — Kj) = wire;) (ki — k),

(7)

whenever 1, 5,1 are distinct.
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3. Examples

In this section we see several examples of C-biconservative hypersurfaces in
S* and H* with constant first and second mean curvatures. First, we have some
Riemannian product hypersurfaces (see [2, 14]).

Example 3.1. Let 0 <r < 1 and Ag = S?(r) C S* defined as

AO = {(ylayQay37y4ay5) € E5|y% +y§ +y?2, erz = r23y5 =V 1- T.Z}’

with the Gauss map n(y) = 7m(y1,y2,y3,y4,0) + %(0 0,0,0,ys5) and

only one principal curvature of multiplicity 3 as k1 = ko = kK3 = Y—— 1 2 . One
can see that Ay is C-biconservative and its 1st and 2nd mean Curvatures are
constant.

Example 3.2. Let 0 <r < 1 and Ay = S%(r) x S'(v/1 —r2) C S* defined
as

A= {(y1,92,y3,y1,y5) EE°|y; +y3 +y3 =12 yi + 5 =1 —r?},

whose Gauss map is n(y) = ;m(yl,yz,yg,o 0) + \/ﬁ(O,O,O,y4,y5). It
. . . . 2 —
has two distinct principal curvatures k1 = ko = 17, = K3 = \/# One

can see that A; is C-biconservative and its 1st and 2nd mean curvatures are
constant.

Example 3.3. Let r > 0 and Ay = H2(—v/72 + 1) x S!(r) C H* defined as
A2 = {(91»y2793ay47y5) € H“5| - y% +y§ +y§ =-1- T2’yi +y§ = T2}7
with the Gauss map n(y) = —=Z=(y1,¥2, 43,0, 0)+¥= M (0,0, 0,34, y5) and two

distinct constant principal curvatures k1 = kg = —rv 1+ 72 and k3 = = T+"2

and the constant higher order mean curvatures. So, As is C-biconservative.

Example 3.4. Let » > 0 and Az = H'(—/r2 + 1) x S?(r) C H* defined by

As = {(y1, Y2, y3,ya,y5) € L°| — 92 + 92 = —1 — 72,42 + 42 + y2 =1},

with the Gauss map l’l(y) = ﬁ(yl,y%oaoao) + 1T-HQQ(0707yfﬁ'w?—/47y5)' it
has two distinct constant principal curvatures k; = —rv/1 + 12 and kg = k3 =

%4”"2 and constant higher order mean curvatures. So, A3 is C-biconservative.
Example 3.5. Let 7 > 0 and Ay = S*(r) C H* defined by

Ay ={(y1,y2,y3.y1,y5) €L°|y5 + 43 +v3 +v5 =1, y1 = V1 + 12},

with the Gauss map n(y) = 2= (91,0,0,0,0) + ¥L=(0, 92,93, 31, ys), only
one constant principal curvature of multiplicity three as kK1 = Ko = k3 =

=TT "and the constant higher order mean curvatures . So, A4 is C-biconservative.
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Example 3.6. Let A5 be H?*(—v/72 +1) C H* where r > 0. It can be
represented by

As={(y1,-y5) €L =i + 3 + 3 + s = -1 -1 ys =1}

with the Gauss map n(y) = ﬁ(yhyg,y‘g,y%O) + 7”;”“2(0,0,070,3/5), only
one principal curvature k1 = ko = k3 = —rv/1 4+ r2 and constant higher order

mean curvatures. Hence, A5 is C-biconservative.

Example 3.7. The totally umbilical hypersurfaces of S* are the round 3-
spheres of radius 0 < p < 1 obtained by intersecting S* with affine hyperplanes.
Let v € E5 be a unit constant vector. The subset

I, :={pecS:(p,v) =0} =S3(V1—-02).

for each o € (—1,1), is a totally umbilical hypersurface in S* with Gauss map
n(p) = ﬁ(v — op) and shape operator S = ﬁ]. In particular, its 1st

HQZ JQ.SO,

l1-0o

and 2nd mean curvatures are constant given by H; = ﬁ,

I', is C-biconservative.

Example 3.8. The totally umbilical hypersurfaces of H* are also obtained
by intersecting H* with affine hyperplanes of L.°, but in this case there are
three different types of hypersurfaces, depending on the causal character of
the hyperplane. Let w € L® be a nonzero constant vector such that (w,w) €
{0, £1}. The subset

0, :={qeH': (q,w) =1}

is a totally umbilical hypersurface of H* if v2 + (w,w) > 0. Its Gauss map is

n(p) = m(v + vq) and shape operator S = —\/ﬁ]. In fact
S3(Vi2—1) CcES  (if (w,w)=—1,|]v] > 1)
0,=< E? (if (w,w) =0,v #0)

H3 (-1 + 12) (if (w,w)=1).

Its 1st and 2nd mean curvatures are constant given by H; =

V24 (w,w)

and Hy = 7 So, O, is C-biconservative.

v
v2+(w,w

4. Main results

In this section, we study C-biconservative hypersurfaces in M*(c) for ¢ = +1.
A similar study has been made for the ordinary biconservative one in some
papers [7, 16, 18]. Let x : M3 — M*(c) be a biconservative hypersurface with
2 distinct principal curvatures. By Theorem 4.2 in [4], M3 is an open part of
a rotational hypersurface in M*(c) for an appropriately chosen profile curve.
In C-biconservative case, we show that such a hypersurfaces in M*(c) with 2
distinct principal curvatures and constant ordinary mean curvature has to be
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of constant second mean curvature. First, we see the next lemma which can be
proved by the same manner of similar one in [15].

Lemma 4.1. Let M? be a hypersurface in M*(c) with principal curvatures
of constant multiplicities. Then the distribution generated by principal direc-
tions is completely integrable. Also, each principal curvature of multiplicity
greater than 1 is constant on each integral submanifold of its distribution.

Theorem 4.2. Let z : M3 — M*(c) be a C-biconservative hypersurface
with constant ordinary mean curvature and at most two distinct principal cur-
vatures. Then, its scalar curvature is constant and M?3 is isoparametric.

Proof. By assumption, M3 has two distinct principal curvatures A and p
of multiplicities 2 and 1, respectively. Defining the open subset U of M? as
U := {p € M3 : VH3(p) # 0}, we prove that U is empty. Assuming U # &,
we consider {ej,e2,e3} as a local orthonormal frame of principal directions of
S on U such that Se; = \;e; for i = 1,2,3. By assumption, we have

)\1:/\2:/\7 )\3:77.
Therefore, we obtain
(8) pi12 = p22 = A, pz2 = A%, 3H =2X+1, 3Hy = A* 4 2\

By condition (1), we have
9
(9) No(VHy) = 5 HyV Hy.
By polar decomposition VHy = Z?:1<VH2, e;)ei, from (9) we get

9
(VHa, ei)(pi2 — §H2) =0

on U, for i = 1,2,3. Hence, for every i such that (VHa,e;) # 0 on U we get

9
(10) Hi2 = §H2.

By assumption, we have VHs # 0 on U, which gives two possible cases.
Case 1. (VHsy,e;) # 0, for i = 1 or i = 2. By equalities (8) and (10), we

obtain
9 2 1

_Zr“ )2
M= 5 (gMn+ 5%,
which gives
(11) A@HF—gA)z

If A = 0 then Hy = 0. Otherwise, we get A = %H, = —%H and Hy = —%HQ.
Case 2. (VHs, e3) # 0. By equalities (8) and (10), we obtain

9 2 1
=—(SAn+ A2

2 —
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which gives

11
If A\ = 0 then Hy = 0. Otherwise, we have A = %H, n = —%Hl and
_ 216 172
Hy = 157 H”.
Therefore, Hy and the scalar curvature of M3 are constant. Finally, we get
that M3 is isoparametric. O

Finally, we pay attention to C-biconservative hypersurfaces with 3 distinct
principal curvatures. We show that such a hypersurface with constant mean
curvature has constant scalar curvature.

Theorem 4.3. Let x : M? — M*(c) be C-biconservative connected hy-
persurface with constant ordinary mean curvature and three distinct principal
curvatures. Then, the scalar curvature of M? is constant.

Proof. Assuming Hs to be non-constant, we take U = {p € M? : VH2(p) #
0}. According to a suitable (local) orthonormal tangent frame {ej,e2,e3} on
M?3, the shape operator S has a diagonal matrix form, such that Se; = \;e;
and then, Noe; = p;0€; for ¢ = 1,2,3. By equality (1) and decomposition

3
VHy; =Y ei(Hs)e;, for i = 1,2,3 we obtain

(13) 63 (H) (s — 3H2) =0,

Around every point p € U there exists a neighborhood such that e;(Hs) # 0 on
which for at least one i. So, we can assume that e;(Hz) # 0 and then we have
Hio = %Hg, (locally) on U, which gives A\aA5 = %HQ. We affirm three claims.
Claim 1: GQ(HQ) = 63(H2) =0.
If eo(Hz) # 0 or e3(Hz) # 0, then by (13) we get pn2 = pioo = %HQ or
H12 = H32 = %HQ, which give )\2()\1 - )\3) = 0 or /\3()\2 - Al) = 0. By
assumption, A;’s are mutually distinct, so we get A3 = 0 or Ay = 0, then
Hs =0 on U. This contradicts with the definition of Y.
Claim 2: 62()\1) = 63()\1) =0.
By assumption H is constant on M. So, ez(A1) = e2(3H — A\ —Ag) = —ea(A1)—
e2(Aa). Also, by recent results, ea(Hz) = 0 and A3 = %Hg, we get

9
62()\1/\3) + 62()\1)\2) = 62(3H2 — §H2) = 07

which gives A\jea(A2 + Az) + (A2 + Az)eaA; = 0, and then we have

Are2(BH—A1)+(Aa+Az)ears = Area(—A1)+(Aa+As5)ead; = (—A1+A2+A3)ear = 0.

Therefore, assuming e3(A1) # 0, we get Ay = A2 + A3 which gives contradiction
ea(A1) = ea( A2+ A3) = e2(BH — A1) = —ea(A\1).

Consequently, e5(A1) = 0.
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Similarly, one can show es(A;) = 0. So, Claim 2 is affirmed.
Claim 3: 62(}\3) = 63(A2) =0.
Using the notations

3

(14) Vee; =Y wher, (i,j =1,2,3),
k=1

and the compatibility condition ey < e;,e; >= 0, we have

(15) wh =0, wl, +wh; =0, (4,5,k=1,2,3)

and applying the Codazzi equation (see [13], page 115, Corollary 34(2))
(16) (Vv S)W = (VwS)V, YV, W € x(M))

on the basis {e1, e2, e3}, we get for distinct 4,5,k = 1,2,3,

(17) (a) ei(Aj) = (A = A

5o

(0) (N = Xjwiy = (A = Ay
Also, by a straightforward computation of components of the identity (V,S)e;—

(Ve,S)e; = 0 for distinct 4,7 = 1,2,3, we get [ez, es](Hz) = 0, wiy, = wiz =
W = wi = wi, = 0 and

e1f2) 5 _ e1(ds)
Y NP VD P
o e3(Xa) 5 ea(Ns)
Wag = X3 — Ay’ W3z = Ny — A
Therefore, the covariant derivatives V., e; simplify to Ve, = 0 for k =
1,2,3, and

(19)

ng =
(18)

e1(A2) e1(A3) e1(A2)
Ve,e1 = N €2, V€1 = m637V6262 = )\161,
_ea(A3) _e3(Xo) _e1(N3) e2(A3)
Ve, €2 N — s 3, Ve, €3 = N A )\2627 Ve,3 = " 7}\161 Ny — )\262-

Now, the Gauss equation for < R(eq, e3)er, ea > and < R(eq,e3)e;, ez >
show that

(20) o (000) = 20 (0 )

e (RO) - ().
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We also have the Gauss equation for < R(e1, ez)er, ea > and < R(es,e1)er, ez >,
which give the following relations
(22)

e1(A2) e1(d) \* e1(As) er(s) \* _
e1 <)\1 — A2> + <)\1 — AQ = )\1)\2, e1 Al — )\3 + Ag — )\1 = )\1>\3.

Finally, we obtain from the Gauss equation for < R(es,e1)es, e3 > that

e2(A3) . e1(A3)e2(As)
(23) “ </\2—>\3> S s = A2 = As)

On the other hand, by considering the condition (1), from Claim 1 we get

(24)
3
—p11ere1(Hs) + (Mz,l A1) =0.

e1(A2) n e1(A3)
2

M — A BTN

) 61(H2) — 9H22(H1 —

By differentiating (24) along on es respectively es, and using (20), (21) we
obtain

(25) 62<61(A2> ) _ ea(Ng) (61()\3) - el(AQ)),

Xo—M/) A= A3 \A1—A3 A — Xy
61()\3) 63()\2) 61()\2) 61()\3)
2 : = - .
(26) 63(A3—A1) JUED P G D v W v
Using (19), we find that
e1(A
(27) le1, €] = A;(_"‘A)l ea.

Applying both sides of the equality (27) on /e\;(_)‘iz, using (25), (22), and
(23), we deduce that

ea(A3) [ er(A3) ei(A2) \ _
(28) Ao — A3 </\3—?:\1+>\1—/\2>_0.

The equality (28) gives e2(A3) = 0 or

er(ds) _ e(Ma)
Az3—A1 A=A

(29)

From equation (29), by differentiating on its both sides along e; and apply-
ing (22), we get Ay = A3, which is a contradiction, so we have to confirm the
result ex(A3) = 0.

Analogously, using (19), we find that [e;, e3] =
manner, we deduce that

es(X2) [ e1(A2) er(As) ) _
(30) Az — Az <>\2—/\1+>\1—/\3>_0’

el()\3) ..
X, €3 By a similar
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and one can show that es3(\2) necessarily has to be vanished.
Hence, we have obtained ea(A3) = e3(A2) = 0 which, by applying the Gauss
equation for < R(eq,es)eq, es >, gives the following equality

61()\3)61()\2)
(A3 = A1) (A2 — A1)

Finally, using (22), differentiating (31) along e; gives

(32) Moda ( als) | als) ) o,

= A2As3.

(31)

A3 — A1 AL — A

which implies As A3 = 0 (since we have seen above that (% + %) #0).

Therefore, we obtain Hy = 0 on U, which is a contradiction. Hence Hs is
constant on M3. O
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