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ON C-BICONSERVATIVE HYPERSURFACES OF NON-FLAT

RIEMANNIAN 4-SPACE FORMS

Firooz Pashaie

Abstract. In this manuscript, the hypersurfaces of non-flat Riemannian

4-space forms are considered. A hypersurface of a 4-dimensional Rie-
mannian space form defined by an isometric immersion x : M3 → M4(c)

is said to be biconservative if it satisfies the equation (∆2x)⊤ = 0, where

∆ is the Laplace operator on M3 and ⊤ stands for the tangent component
of vectors. We study an extended version of biconservativity condition

on the hypersurfaces of the Riemannian standard 4-space forms. The

C-biconservativity condition is obtained by substituting the Cheng-Yau
operator C instead of ∆. We prove that C-biconservative hypersurfaces

of Riemannian 4-space forms (with some additional conditions) have con-

stant scalar curvature.

1. Introduction

The subject of biconservative submanifolds is an interesting research topic
in mathematical physics, which has been started by Eells and Sampson and
followed by Jiang ([5, 10]). From the physical points of view, we deal with the
bienergy functional and its critical points arisen form the tension field. In geo-
metric context, the subject of biconservative submanifolds has received much
attentions. In 1995, Hasanis and Vlachos have classified the biconservative hy-
persurfaces (namely, H-hypersurfaces) of 3 and 4 dimensional Euclidean spaces
([9]). The notion of biconservative submanifold in an arbitrary manifold (not
only in Euclidean spaces) has been introduced for the first time in [3]. The full
classification of biconservative surfaces in 3-dimensional space forms was done
in [12].

In 2015, Turgay has studied the H-hypersurfaces with 3 distinct principal
curvatures in the Euclidean spaces ([16]). Also, the constant mean curvature
biconservative surfaces in Sn × R and Hn × R has been studied in [6]. In
2019, Gupta studied the biconservative hypersurfaces in Euclidean 5-space ([8]).
Also, the biconservative hypersurfaces in Riemannian 4-space forms have been
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classified by Turgay and Upadhyay ([17]). In this paper, we study the C-
biconservativity condition on the hypersurfaces of Riemannian 4-space forms.
A hypersurface M3 of M4(c) is said to be C-biconservative if it satisfies the
condition

(1) N2(∇H2)− cN1(∇H1) =
9

2
H2∇H2.

Here, N1 and N2 are the first and second Newton transformations (respec-
tively),and H1 and H2 are the ordinary and second mean curvatures on M3

defined by H1 = 1
3 (κ1+κ2+κ3) and H2 = 1

3 (κ1κ2+κ1κ3+κ2κ3) (respectively),

where κ1, κ2 and κ3 are the principal curvatures of M3.
We show that the C-biconservative hypersurfaces of M4(c) with constant

ordinary mean curvature have constant scalar curvature.

2. Preliminaries

We recall some notations and formulae from [1, 2, 11, 13, 19]. The 4-
dimensional Riemannian standard space form M4(c) of curvature c is

M4(c) =

 S4 = S4(1) ⊂ E5 (if c = 1)
E4 (if c = 0)
H4 = H4(−1) ⊂ L5 (if c = −1).

As usual, Ek is the Euclidean k-space (for each natural number k) with dot

product ⟨v,w⟩ =
∑k

i=1 viwi. The Euclidean k-space equipped with the Lorentz

product defined by ⟨v,w⟩ = −v1w1 +
∑k

i=2 viwi (for v,w ∈ Rk) gives the
Lorentz-Minkowski k-space Lk. For r > 0,

Sk(r) = {v ∈ Ek+1|⟨v,v⟩ = r2}

denotes the Euclidean k-sphere of radius r and curvature 1/r2, and

Hk(−r) = {v ∈ Lk+1|⟨v,v⟩ = −r2, v1 > 0}

denotes the hyperbolic k-space of radius −r and curvature −1/r2.
We consider a hypersurface M3 in M4(c) as a 3-dimensional submanifold

isometrically immersed by a map x : M3 → M4(c). The notation χ(M3) stands
for the set of smooth tangent vector fields onM3. The symbols∇ and ∇̄ denote
the Levi-Civita connections on M3 and M4(c), respectively. Also, ∇0 denotes
the Levi-Civita connection on E5 or L5. The Weingarten formula on M3 is

∇̄V W = ∇V W + ⟨SV,W ⟩n,

for each V,W ∈ χ(M3), where S is the shape operator of M3 associated to a
unit normal vector field n on M3. Furthermore, in the case |c| = 1, M4(c) is a
4-hyperquadric in E5 or L5, with the unit normal vector field x and the Gauss
formula ∇0

V W = ∇̄V W − c⟨V,W ⟩x.
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Denoting the eigenvalues of S (i.e. the principal curvatures of M) by
κ1, κ2, κ3 on M , we define the jth elementary symmetric function as

sj :=
∑

1≤i1<...<ij≤n

κi1 ...κij ,

and the jth mean curvature of M as (3j )Hj = sj (for instance, see [1] and
[2]). In special case j = 1, H1 is the ordinary mean curvature H. The second
mean curvature H2 and the normalized scalar curvature R satisfy the equality
H2 := n(n− 1)(1−R).

The hypersurface M3 in M4(c) is called j-minimal if its (j + 1)th mean
curvature Hj+1 is identically zero.

Also, we apply the Newton map on M3 by expression

(2) N0 = I, N1 = −s1I + S, N2 = s2I − s1S + S2,

where I is the identity map. If e1, e2 and e3 are the eigenvectors of S(p) cor-
responding to the eigenvalues κ1(p), κ2(p) and κ3(p), respectively, then they
are also the eigenvectors of Nj(p) with corresponding eigenvalues given by
µ1,1 = −κ2 − κ3, µ2,1 = −κ1 − κ3, µ3,1 = −κ1 − κ2, µ1,2 = κ2κ3, µ2,2 = κ1κ3,
µ3,2 = κ1κ2.

We have the following formulae for the Newton transformations:

tr(Nj) = cjHj , tr(S ◦Nj) = cjHj+1,

tr(S2 ◦N1) = 9H1H2 − 3H3, tr(S2 ◦N2) = 3H1H3,
(3)

where j = 0, 1, 2, c0 = c2 = 3 and c1 = 6.

Now, we consider the second-order linear differential operator C : C∞(M3) →
C∞(M3) given by C(f) = tr(N1 ◦ ∇2f), where, ∇2f : χ(M) → χ(M) denotes
the self-adjoint linear operator metrically equivalent to the Hessian of f which
is given for every vector fields X,Y ∈ χ(M3), by

⟨∇2f(X), Y ⟩ = ⟨∇X(∇f), Y ⟩.

In other words, C(f) is given by C(f) =
∑3

i=1 µi,1(eieif −∇eieif). So, we get

Cn = −3grad(H2)− (9H1H2 − 3H3)n+ 6cH2x,

and

C2x = −54H2∇H2 + 12N2∇H2 − 12cN1∇H1

+ 6
(
C(H2)− 9H1H

2
2 + 3H2H3 − 6cH1H2

)
n

− 6c
(
C(H1)− 6H2

2 − 6cH2
1

)
x

(4)

By definition, M3 is called C-biconservative if x satisfies (C2x)⊤ = 0 (i.e the
condition (1)).

According to (local) orthonormal tangent frame {em}1≤m≤4 in R4, and
associated co-frame {ωm}1≤m≤4, where e1, e2, e3 are tangent to M and e4 is
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positively normal to M . The structure equations of R4 are

dωA =

4∑
B=1

ωAB ∧ ωB , ωAB + ωBA = 0, dωAB =

4∑
C=1

ωAC ∧ ωCB .

Of course, we have ω4 = 0 and 0 = dω4 =
3∑

i=1

ω4i ∧ ωi on M .

Using the well-known Cartan Lemma, we have functions hij such that hij =
hji and

(5) ω4i =

3∑
j=1

hijωj .

Since the second fundamental form of M is B =
4∑

i,j=1

hijωiωje4, the mean

curvature H has the simple form H = 1
3

3∑
i=1

hii. Hence, from (5) we can get

the structure equations as (see [19])

dωi =

3∑
j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij =

3∑
k=1

ωik ∧ ωkj −
1

2

3∑
k,l=1

Rijklωk ∧ ωl.

Also, we have the Gauss equation Rijkl = (hikhjl − hilhjk), where Rijkl stand
for the components of the tensor of Riemannian curvature on M . Finally, we
have

(6)
∑
k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj ,

where hijk is the covariant derivative of hij . Thus, by exterior differentiation
of (5), we obtain the Codazzi equation hijk = hikj . One can choose e1, e2, e3
such that hij = κiδij . On the other hand, the Levi-Civita connection of M3

satisfies

∇eiej =
∑
k

ωjk(ei)ek,

and we have

ei(kj) = ωij(ej)(κi − κj),

ωij(el)(κi − κj) = ωil(ej)(κi − κl),
(7)

whenever i, j, l are distinct.
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3. Examples

In this section we see several examples of C-biconservative hypersurfaces in
S4 and H4 with constant first and second mean curvatures. First, we have some
Riemannian product hypersurfaces (see [2, 14]).

Example 3.1. Let 0 < r < 1 and Λ0 = S3(r) ⊂ S4 defined as

Λ0 = {(y1, y2, y3, y4, y5) ∈ E5|y21 + y22 + y23 + y24 = r2, y5 =
√

1− r2},

with the Gauss map n(y) = −
√
1−r2

r (y1, y2, y3, y4, 0) +
r√

1−r2
(0, 0, 0, 0, y5) and

only one principal curvature of multiplicity 3 as κ1 = κ2 = κ3 =
√
1−r2

r ,. One
can see that Λ0 is C-biconservative and its 1st and 2nd mean curvatures are
constant.

Example 3.2. Let 0 < r < 1 and Λ1 = S2(r) × S1(
√
1− r2) ⊂ S4 defined

as

Λ1 = {(y1, y2, y3, y4, y5) ∈ E5|y21 + y22 + y23 = r2, y24 + y25 = 1− r2},

whose Gauss map is n(y) = −
√
1−r2

r (y1, y2, y3, 0, 0) +
r√

1−r2
(0, 0, 0, y4, y5). It

has two distinct principal curvatures κ1 = κ2 =
√
1−r2

r , κ3 = −r√
1−r2

. One

can see that Λ1 is C-biconservative and its 1st and 2nd mean curvatures are
constant.

Example 3.3. Let r > 0 and Λ2 = H2(−
√
r2 + 1)× S1(r) ⊂ H4 defined as

Λ2 = {(y1, y2, y3, y4, y5) ∈ L5| − y21 + y22 + y23 = −1− r2, y24 + y25 = r2},

with the Gauss map n(y) = r√
1+r2

(y1, y2, y3, 0, 0)+
√
1+r2

r (0, 0, 0, y4, y5) and two

distinct constant principal curvatures κ1 = κ2 = −r
√
1 + r2 and κ3 = −

√
1+r2

r
and the constant higher order mean curvatures. So, Λ2 is C-biconservative.

Example 3.4. Let r > 0 and Λ3 = H1(−
√
r2 + 1)× S2(r) ⊂ H4 defined by

Λ3 = {(y1, y2, y3, y4, y5) ∈ L5| − y21 + y22 = −1− r2, y23 + y24 + y25 = r2},

with the Gauss map n(y) = r√
1+r2

(y1, y2, 0, 0, 0) +
√
1+r2

r (0, 0, y3, y4, y5). it

has two distinct constant principal curvatures κ1 = −r
√
1 + r2 and κ2 = κ3 =

−
√
1+r2

r and constant higher order mean curvatures. So, Λ3 is C-biconservative.

Example 3.5. Let r > 0 and Λ4 = S3(r) ⊂ H4 defined by

Λ4 = {(y1, y2, y3, y4, y5) ∈ L5|y22 + y23 + y24 + y25 = r2, y1 =
√

1 + r2},

with the Gauss map n(y) = r√
1+r2

(y1, 0, 0, 0, 0) +
√
1+r2

r (0, y2, y3, y4, y5), only

one constant principal curvature of multiplicity three as κ1 = κ2 = κ3 =
−
√
1+r2

r , and the constant higher order mean curvatures . So, Λ4 is C-biconservative.
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Example 3.6. Let Λ5 be H3(−
√
r2 + 1) ⊂ H4 where r ≥ 0. It can be

represented by

Λ5 = {(y1, ..., y5) ∈ L5| − y21 + y22 + y23 + y24 = −1− r2, y5 = r}

with the Gauss map n(y) = r√
1+r2

(y1, y2, y3, y4, 0) +
√
1+r2

r (0, 0, 0, 0, y5), only

one principal curvature κ1 = κ2 = κ3 = −r
√
1 + r2 and constant higher order

mean curvatures. Hence, Λ5 is C-biconservative.

Example 3.7. The totally umbilical hypersurfaces of S4 are the round 3-
spheres of radius 0 < ρ ≤ 1 obtained by intersecting S4 with affine hyperplanes.
Let v ∈ E5 be a unit constant vector. The subset

Γσ := {p ∈ S4 : ⟨p,v⟩ = σ} = S3(
√

1− σ2).

for each σ ∈ (−1, 1), is a totally umbilical hypersurface in S4 with Gauss map
n(p) = 1√

1−σ2
(v− σp) and shape operator S = σ√

1−σ2
I. In particular, its 1st

and 2nd mean curvatures are constant given by H1 = σ√
1−σ2

, H2 = σ
1−σ2 . So,

Γσ is C-biconservative.

Example 3.8. The totally umbilical hypersurfaces of H4 are also obtained
by intersecting H4 with affine hyperplanes of L5, but in this case there are
three different types of hypersurfaces, depending on the causal character of
the hyperplane. Let w ∈ L5 be a nonzero constant vector such that ⟨w,w⟩ ∈
{0,±1}. The subset

Θν := {q ∈ H4 : ⟨q,w⟩ = ν}
is a totally umbilical hypersurface of H4 if ν2 + ⟨w,w⟩ > 0. Its Gauss map is
n(p) = 1√

⟨w,w⟩+ν2
(v+ νq) and shape operator S = − ν√

ν2+⟨w,w⟩>
I. In fact

Θν =

 S3(
√
ν2 − 1) ⊂ E5 (if ⟨w,w⟩ = −1, |ν| > 1)

E3 (if ⟨w,w⟩ = 0, ν ̸= 0)

H3(−
√
1 + ν2) (if ⟨w,w⟩ = 1).

Its 1st and 2nd mean curvatures are constant given by H1 = −ν√
ν2+⟨w,w⟩

and H2 = ν2

ν2+⟨w,w⟩ . So, Θν is C-biconservative.

4. Main results

In this section, we study C-biconservative hypersurfaces inM4(c) for c = ±1.
A similar study has been made for the ordinary biconservative one in some
papers [7, 16, 18]. Let x : M3 → M4(c) be a biconservative hypersurface with
2 distinct principal curvatures. By Theorem 4.2 in [4], M3 is an open part of
a rotational hypersurface in M4(c) for an appropriately chosen profile curve.
In C-biconservative case, we show that such a hypersurfaces in M4(c) with 2
distinct principal curvatures and constant ordinary mean curvature has to be
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of constant second mean curvature. First, we see the next lemma which can be
proved by the same manner of similar one in [15].

Lemma 4.1. Let M3 be a hypersurface in M4(c) with principal curvatures
of constant multiplicities. Then the distribution generated by principal direc-
tions is completely integrable. Also, each principal curvature of multiplicity
greater than 1 is constant on each integral submanifold of its distribution.

Theorem 4.2. Let x : M3 → M4(c) be a C-biconservative hypersurface
with constant ordinary mean curvature and at most two distinct principal cur-
vatures. Then, its scalar curvature is constant and M3 is isoparametric.

Proof. By assumption, M3 has two distinct principal curvatures λ and µ
of multiplicities 2 and 1, respectively. Defining the open subset U of M3 as
U := {p ∈ M3 : ∇H2

2 (p) ̸= 0}, we prove that U is empty. Assuming U ̸= ∅,
we consider {e1, e2, e3} as a local orthonormal frame of principal directions of
S on U such that Sei = λiei for i = 1, 2, 3. By assumption, we have

λ1 = λ2 = λ, λ3 = η.

Therefore, we obtain

(8) µ1,2 = µ2,2 = λη, µ3,2 = λ2, 3H = 2λ+ η, 3H2 = λ2 + 2λη.

By condition (1), we have

(9) N2(∇H2) =
9

2
H2∇H2.

By polar decomposition ∇H2 =
∑3

i=1⟨∇H2, ei⟩ei, from (9) we get

⟨∇H2, ei⟩(µi,2 −
9

2
H2) = 0

on U , for i = 1, 2, 3. Hence, for every i such that ⟨∇H2, ei⟩ ≠ 0 on U we get

(10) µi,2 =
9

2
H2.

By assumption, we have ∇H2 ̸= 0 on U, which gives two possible cases.
Case 1. ⟨∇H2, ei⟩ ≠ 0, for i = 1 or i = 2. By equalities (8) and (10), we

obtain

λη =
9

2
(
2

3
λη +

1

3
λ2),

which gives

(11) λ(6H − 5

2
λ) = 0.

If λ = 0 thenH2 = 0. Otherwise, we get λ = 12
5 H, η = − 9

5H andH2 = − 72
25H

2.
Case 2. ⟨∇H2, e3⟩ ≠ 0. By equalities (8) and (10), we obtain

λ2 =
9

2
(
2

3
λη +

1

3
λ2),
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which gives

(12) λ(9H − 11

2
λ) = 0.

If λ = 0 then H2 = 0. Otherwise, we have λ = 18
11H, η = − 3

11H1 and

H2 = 216
121H

2.

Therefore, H2 and the scalar curvature of M3 are constant. Finally, we get
that M3 is isoparametric.

Finally, we pay attention to C-biconservative hypersurfaces with 3 distinct
principal curvatures. We show that such a hypersurface with constant mean
curvature has constant scalar curvature.

Theorem 4.3. Let x : M3 → M4(c) be C-biconservative connected hy-
persurface with constant ordinary mean curvature and three distinct principal
curvatures. Then, the scalar curvature of M3 is constant.

Proof. Assuming H2 to be non-constant, we take U = {p ∈ M3 : ∇H2
2 (p) ̸=

0}. According to a suitable (local) orthonormal tangent frame {e1, e2, e3} on
M3, the shape operator S has a diagonal matrix form, such that Sei = λiei
and then, N2ei = µi,2ei for i = 1, 2, 3. By equality (1) and decomposition

∇H2 =
3∑

i=1

ei(H2)ei, for i = 1, 2, 3 we obtain

(13) ei(H2)(µi,2 −
9

2
H2) = 0.

Around every point p ∈ U there exists a neighborhood such that ei(H2) ̸= 0 on
which for at least one i. So, we can assume that e1(H2) ̸= 0 and then we have
µ1,2 = 9

2H2, (locally) on U, which gives λ2λ3 = 9
2H2. We affirm three claims.

Claim 1: e2(H2) = e3(H2) = 0.
If e2(H2) ̸= 0 or e3(H2) ̸= 0, then by (13) we get µ1,2 = µ2,2 = 9

2H2 or

µ1,2 = µ3,2 = 9
2H2, which give λ2(λ1 − λ3) = 0 or λ3(λ2 − λ1) = 0. By

assumption, λi’s are mutually distinct, so we get λ3 = 0 or λ2 = 0, then
H2 = 0 on U . This contradicts with the definition of U .

Claim 2: e2(λ1) = e3(λ1) = 0.
By assumption H is constant on M . So, e2(λ1) = e2(3H−λ1−λ2) = −e2(λ1)−
e2(λ2). Also, by recent results, e2(H2) = 0 and λ2λ3 = 9

2H2, we get

e2(λ1λ3) + e2(λ1λ2) = e2(3H2 −
9

2
H2) = 0,

which gives λ1e2(λ2 + λ3) + (λ2 + λ3)e2λ1 = 0, and then we have

λ1e2(3H−λ1)+(λ2+λ3)e2λ1 = λ1e2(−λ1)+(λ2+λ3)e2λ1 = (−λ1+λ2+λ3)e2λ1 = 0.

Therefore, assuming e2(λ1) ̸= 0, we get λ1 = λ2+λ3 which gives contradiction

e2(λ1) = e2(λ2 + λ3) = e2(3H − λ1) = −e2(λ1).

Consequently, e2(λ1) = 0.
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Similarly, one can show e3(λ1) = 0. So, Claim 2 is affirmed.

Claim 3: e2(λ3) = e3(λ2) = 0.
Using the notations

(14) ∇eiej =

3∑
k=1

ωk
ijek, (i, j = 1, 2, 3),

and the compatibility condition ek < ei, ej >= 0, we have

(15) ωi
ki = 0, ωj

ki + ωi
kj = 0, (i, j, k = 1, 2, 3)

and applying the Codazzi equation (see [13], page 115, Corollary 34(2))

(16) (∇V S)W = (∇WS)V, (∀V,W ∈ χ(M))

on the basis {e1, e2, e3}, we get for distinct i, j, k = 1, 2, 3,

(17) (a) ei(λj) = (λi − λj)ω
j
ji, (b) (λi − λj)ω

j
ki = (λk − λj)ω

j
ik.

Also, by a straightforward computation of components of the identity (∇eiS)ej−
(∇ejS)ei ≡ 0 for distinct i, j = 1, 2, 3, we get [e2, e3](H2) = 0, ω1

12 = ω1
13 =

ω2
13 = ω3

21 = ω1
32 = 0 and

ω2
21 =

e1(λ2)

λ1 − λ2
, ω3

31 =
e1(λ3)

λ1 − λ3
,

ω2
23 =

e3(λ2)

λ3 − λ2
, ω3

32 =
e2(λ3)

λ2 − λ3
.

(18)

Therefore, the covariant derivatives ∇eiej simplify to ∇e1ek = 0 for k =
1, 2, 3, and

∇e2e1 =
e1(λ2)

λ1 − λ2
e2, ∇e3e1 =

e1(λ3)

λ1 − λ3
e3,∇e2e2 =

e1(λ2)

λ2 − λ1
e1,

∇e3e2 =
e2(λ3)

λ2 − λ3
e3,∇e2e3 =

e3(λ2)

λ3 − λ2
e2, ∇e3e3 =

e1(λ3)

λ3 − λ1
e1 +

e2(λ3)

λ3 − λ2
e2.

(19)

Now, the Gauss equation for < R(e2, e3)e1, e2 > and < R(e2, e3)e1, e3 >
show that

(20) e3

(
e1(λ2)

λ1 − λ2

)
=

e3(λ2)

λ3 − λ2

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(21) e2

(
e1(λ3)

λ1 − λ3

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
.
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We also have the Gauss equation for< R(e1, e2)e1, e2 > and< R(e3, e1)e1, e3 >,
which give the following relations
(22)

e1

(
e1(λ2)

λ1 − λ2

)
+

(
e1(λ2)

λ1 − λ2

)2

= λ1λ2, e1

(
e1(λ3)

λ1 − λ3

)
+

(
e1(λ3)

λ3 − λ1

)2

= λ1λ3.

Finally, we obtain from the Gauss equation for < R(e3, e1)e2, e3 > that

(23) e1

(
e2(λ3)

λ2 − λ3

)
=

e1(λ3)e2(λ3)

(λ3 − λ1)(λ2 − λ3)
.

On the other hand, by considering the condition (1), from Claim 1 we get
(24)

−µ1,1e1e1(H2) +

(
µ2,1

e1(λ2)

λ2 − λ1
+ µ3,1

e1(λ3)

λ3 − λ1

)
e1(H2)− 9H2

2 (H1 −
3

2
λ1) = 0.

By differentiating (24) along on e2 respectively e3, and using (20), (21) we
obtain

(25) e2

(
e1(λ2)

λ2 − λ1

)
=

e2(λ3)

λ2 − λ3

(
e1(λ3)

λ1 − λ3
− e1(λ2)

λ1 − λ2

)
,

(26) e3

(
e1(λ3)

λ3 − λ1

)
=

e3(λ2)

λ3 − λ2

(
e1(λ2)

λ1 − λ2
− e1(λ3)

λ1 − λ3

)
.

Using (19), we find that

(27) [e1, e2] =
e1(λ2)

λ2 − λ1
e2.

Applying both sides of the equality (27) on e1(λ2)
λ2−λ1

, using (25), (22), and

(23), we deduce that

(28)
e2(λ3)

λ2 − λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0.

The equality (28) gives e2(λ3) = 0 or

(29)
e1(λ3)

λ3 − λ1
=

e1(λ2)

λ2 − λ1
.

From equation (29), by differentiating on its both sides along e1 and apply-
ing (22), we get λ2 = λ3, which is a contradiction, so we have to confirm the
result e2(λ3) = 0.

Analogously, using (19), we find that [e1, e3] = e1(λ3)
λ3−λ1

e3. By a similar
manner, we deduce that

(30)
e3(λ2)

λ3 − λ2

(
e1(λ2)

λ2 − λ1
+

e1(λ3)

λ1 − λ3

)
= 0,
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and one can show that e3(λ2) necessarily has to be vanished.
Hence, we have obtained e2(λ3) = e3(λ2) = 0 which, by applying the Gauss

equation for < R(e2, e3)e1, e3 >, gives the following equality

(31)
e1(λ3)e1(λ2)

(λ3 − λ1)(λ2 − λ1)
= λ2λ3.

Finally, using (22), differentiating (31) along e1 gives

(32) λ2λ3

(
e1(λ3)

λ3 − λ1
+

e1(λ2)

λ1 − λ2

)
= 0,

which implies λ2λ3 = 0 (since we have seen above that
(

e1(λ3)
λ3−λ1

+ e1(λ2)
λ1−λ2

)
̸= 0).

Therefore, we obtain H2 = 0 on U, which is a contradiction. Hence H2 is
constant on M3.
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