과제정보
Financial support from Universiti Sains Malaysia's Graduate On Time Incentive with account number 1001/PMATHS/823233 is gratefully acknowledged.
참고문헌
- C. Milici, G. Draganescu and J.T. Machado, Introduction to Fractional Differential Equations, Springer International Publishing, Cham., 2019.
- R.E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific Publishing Danvers, 2005.
- M.M. Hikal and W.K. Zahra, On Fractional Model of an HIV/AIDS with Treatment and Time Delay, 02- Progress in Fractional Differentiation and Applications 2 (2016), 55-66. DOI 10.18576/pfda/020106
- K. Dolfsson, M. Enelund and S. Larsson, Space-time Discretization of an Integro-differential Equation Modeling Quasi-static Fractional-order Viscoelasticity, Journal of Vibration and Control 14 (2008), 1631-1649. DOI 10.1177/1077546307087399
- M. Dalir, and M. Bashour, Applications of Fractional Calculus, Applied Mathematical Sciences 4 (2010), 1021-1032. DOI 10.4236/jamp.2018.66105
- A.E. C, alik, H. Ertik, B. Oder, H. S,irin, Fractional calculus approach to investigate the alpha decay processes, Int. J. Mod. Phys. E. 22 (2013), 1350049.
- S.S. Alzaid, P.K. Shaw and S. Kumar, A numerical study of fractional population growth and nuclear decay model, AIMS Math. 7 (2022), 11417-11442. DOI 10.3934/math.2022637
- M. Turkyilmazoglu, An Efficient Computational Method for Differential Equations of Fractional Type, CMES-Computer Modeling in Engineering & Sciences 133 (2002), 47-65. https://doi.org/10.32604/cmes.2022.020781
- M. Alqhtani, K.M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel[J]. AIMS Mathematics 7 (2022), 6535-6549. doi: 10.3934/math.2022364
- Y.M. Wang, B. Xie, A fourth-order fractional Adams-type implicit-explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions, Mathematics and Computers in Simulation 212 (2023), 21-48.
- E.B.M. Bashier, Fitted Numerical Methods for Delay Differential Equations Arising in Biology, Ph.D. thesis, University of the Western Cape, South Africa, 2009.
- C.A. Cruz-L'opez, G. Espinosa-Paredes, Fractional radioactive decay law and Bateman equations, Nuclear Engineering and Technology 54 (2002), 275-282. https://doi.org/10.1016/j.net.2021.07.026
- L. Banjai, M.L. Fern'andez, Efficient high order algorithms for fractional integrals and fractional differential equations, Numer. Math. 141 (2019), 289-317. https://doi.org/10.1007/s00211-018-1004-0
- D. Baffet, A Gauss-Jacobi Kernel Compression Scheme for Fractional Differential Equations, J. Sci. Comput. 79 (2019), 227-248. https://doi.org/10.1007/s10915-018-0848-x
- D. Baffet and J.S. Hesthaven, A Kernel Compression Scheme for Fractional Differential Equations, SIAM J. Numer. Anal. 55 (2017), 496-520. DOI 10.1137/15m1043960
- M.Y. Ongun, D. Arslan and R. Garrappa, Nonstandard finite difference schemes for a fractional-order Brusselator system, Adv. Differ. Equations 102 (2013), 1-13. DOI 10.1186/1687-1847-2013-102
- B. Jin, Fractional Differential Equations, Springer International Publishing, Cham, 2021. DOI 10.1007/978-3-030-76043-4.
- D.G. Zill and M.R. Cullen, Differential Equations with Boundary-Value Problems, Brooks/Cole, Belmont, 2001.
- M. Awadalla and Y. Yameni, Modeling Exponential Growth and Exponential Decay Real Phenomena by ψ-Caputo Fractional Derivative, J. Adv. Math. Comput. Sci. 28 (2018), 1-13. DOI 109734/jamcs/2018/43054 109734/jamcs/2018/43054
- E.B.M. Bashier, Practical Numerical and Scientific Computing with MATLAB® and Python, CRC Press, Boca Raton, 2020. DOI:10.1201/9780429021985
- R.L. Burden and J.D. Faires, Numerical Analysis, 9th Edition, Brookscole, Boston, 2011.
- H. Shintani, Convergence, consistency and stability of step-by-step methods for ordinary differential equations, Hiroshima mathematical journal 15 (1985), 89-107.
- S. Kumar, R. Singh, R.P. Chauhan, Investigation of an Interacting Fractional-Order Predator-Prey System in Presence of Fear and Harvesting, Iran J. Sci. (2023). https://doi.org/10.1007/s40995-023-01540-5
- H. Zhang, Y. Liu and X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput. 69 (2023), 651-674. https://doi.org/10.1007/s12190-022-01760-9