DOI QR코드

DOI QR Code

ON ATTRACTORS OF TYPE 1 ITERATED FUNCTION SYSTEMS

  • JOSE MATHEW (Department of Mathematics, Deva Matha College) ;
  • SUNIL MATHEW (Department of Mathematics, National Institute of Technology Calicut) ;
  • NICOLAE ADRIAN SECELEAN (Department of Mathematics and Computer Science, Lucian Blaga University of Sibiu)
  • 투고 : 2023.10.01
  • 심사 : 2024.01.11
  • 발행 : 2024.05.30

초록

This paper discusses the properties of attractors of Type 1 IFS which construct self similar fractals on product spaces. General results like continuity theorem and Collage theorem for Type 1 IFS are established. An algebraic equivalent condition for the open set condition is studied to characterize the points outside a feasible open set. Connectedness properties of Type 1 IFS are mainly discussed. Equivalence condition for connectedness, arc wise connectedness and locally connectedness of a Type 1 IFS is established. A relation connecting separation properties and topological properties of Type 1 IFS attractors is studied using a generalized address system in product spaces. A construction of 3D fractal images is proposed as an application of the Type 1 IFS theory.

키워드

과제정보

The first author gratefully acknowledges the financial support of the Council of Scientific and Industrial Research, India (CSIR).

참고문헌

  1. R.K. Aswathy, S. Mathew, On different forms of self similarity, Chaos, Solitons and Fractals 87 (2016), 102-108.
  2. R.K. Aswathy, S. Mathew, Separation properties of finite products of hyperbolic iterated function systems, Communications in Nonlinear Science and Numerical Simulation 67 (2019), 594-599.
  3. R.K. Aswathy, S. Mathew, Weak self similar sets in separable metric spaces, Fractals 25 (2017), 1750021.
  4. R. Balu, S. Mathew, On (n, m)-Iterated Function System, Asian-European Journal of Mathematics 6 (2013), 1350055.
  5. R. Balu, S. Mathew, N.A. Secelean, Separation properties of (n, m)-IFS attractors, Communications in Nonlinear Science and Numerical Simulation 51 (2017), 160-168.
  6. C. Bandt, Self-similar sets 5. Integer matrices and fractal tilings of Rn, Proceedings of the American Mathematical Society 112 (1991), 549-562.
  7. C. Bandt, S. Graf, Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure, Proceedings of the American Mathematical Society (1992), 995-1001.
  8. M.F. Barnsley, Fractals everywhere, Academic press 2014.
  9. P.F. Duvall, L.S. Husch, Attractors of iterated function systems, Proceedings of the American Mathematical Society 116 (1992), 279-284.
  10. K.J. Falconer, Fractal geometry: Mathematical foundations and applications, John Wiley and Sons, New York, 1990.
  11. K.J. Falconer, Sub self similar sets, Transactions of the American Mathematical Society 347 (1995), 3121-3129.
  12. A. Garg, A. Negi, A. Agrawal, B. Latwal, Geometric Modelling Of Complex Objects Using Iterated Function System, International Journal of International Journal of Scientific and Technology Research 3 (2014), 1-8.
  13. M. Hata, On the structure of self-similar sets, Japan Journal of Applied Mathematics 2 (1985), 381-414.
  14. R. Hohlfeld, N. Cohen, Self-similarity and the geometric requirements for frequency independence in antennae, Fractals 7 (1999), 79-84.
  15. A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: An Eclectic Survey, Part I, Fractal and Fractional 6(2022), 89.
  16. A. Husain, M.N. Nanda, M.S. Chowdary, M. Sajid, Fractals: An Eclectic Survey, Part II, Fractal and Fractional 6 (2022), 379.
  17. J.E. Hutchinson, Fractals and self similarity, Indiana University Mathematics Journal 30 (1981), 713-747.
  18. K.D. Joshi, Introduction to general topology, New Age International, 1983.
  19. B. Mandelbrot, The fractal geometry of nature, WH Freeman, New York, 1982.
  20. P. Mattila, On the structure of self-similar fractals, Annales Academire Scientiarum Fennicrc. Series A. I. Mathematica 7 (1982), 189-195.
  21. M. McClure, The Boral structure of the collections of sub self similar sets and super self similar sets, Acta Mathematics Universitatis Comenianae LXIX (2000), 145-149.
  22. S. Minirani, S. Mathew, Fractals in Partial Metric spaces, Fractals, Wavelets and its Applications 92 (2014), 203-215.
  23. S. Minirani, S. Mathew, On topology of fractal space, Mathematical Sciences International Research Journal 2 (2012), 262-275.
  24. J.R. Munkres, Topology, Prentice Hall, US, 2000.
  25. N. Niralda, S. Mathew, N.A. Secelean, On boundaries of attractors in dynamical systems, Communications in Non Linear Science and Numerical Simulation 94 (2021), 105572.
  26. B. Rama, J. Mishra, Generation of 3D Fractal Images for Mandelbrot and Julia Sets, International Journal of Computer and Communication Technology 1 (2010), 178-182.
  27. F. Sandoghdar, Connectedness of the attractor of an iterated function system, Concordia University, 1995.
  28. A.J. Sayooj, R. Raja, B.I. Omede, R.P. Agarwal, J. Cao, V.E. Balas, Mathematical Modeling on Co-infection: Transmission Dynamics of Zika virus and Dengue fever, Nonlinear Dynamics 111 (2023), 4879-4914.
  29. A. Schief, Self-similar sets in complete metric spaces, Proceedings of the American Mathematical Society 124 (1996), 481-490.
  30. A. Schief, Separation properties for self-similar sets, Proceedings of the American Mathematical Society 122 (1994), 111-115.
  31. N.A. Secelean, Countable iterated function systems, Far East Journal of Dynamical Systems 3 (2001), 149-167.
  32. N.A. Secelean, Generalized countable iterated function systems, Filomat 25 (2011), 21-36.
  33. N.A. Secelean, Generalized countable iterated function systems on the space l(x), Journal of Mathematical Analysis and Applications 410 (2014), 847-858.
  34. N.A. Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory and Application 1 (2013), 1-13.
  35. N.A. Secelean, S. Mathew, D. Wardowski, New fixed point results in quasi-metric spaces and applications in Fractals Theory, Advances in Difference Equations 2019 (2019), 1-23.