DOI QR코드

DOI QR Code

Optimizing cement replacement with rice husk ash and eggshell ash for enhanced mechanical properties of geopolymer concrete: A comparative study with and without admixture

  • Yashwanth Pamu (Department of Civil Engineering, CVR College of Engineering) ;
  • Venkata Sarath Pamu (Department of Food and Agricultural Products Centre, Oklahoma State University) ;
  • Praveen Samarthi (Department of Civil Engineering, CVR College of Engineering) ;
  • Mahesh Kona (Department of Civil Engineering, CVR College of Engineering)
  • 투고 : 2023.09.21
  • 심사 : 2023.11.13
  • 발행 : 2024.06.25

초록

This paper proposes a study of cement replacement with rice husk ash (RHA) and eggshell ash (ESA) for enhanced mechanical properties of geopolymer (GP) concrete with and without admixture. The main objective is to investigate the mechanical properties of GP with various replacement levels of Pozzolana Portland cement by RHA and ESA. The GP resistance to durability is examined and impact of ash materials on concrete's durability performance is determined. The environmental benefits of using agricultural waste materials in GP manufacturing minimize cement usage and CO2 emissions. The goal is to assess value of RHA-ESA of building material, paving stones for structures to lessen environmental impact. The novelty lies in use of ESA and RHA as partial replacements for cement and investigation of admixtures to enhance concrete properties, and reduce environmental impact. The research contributes by introducing a novel approach to reducing cement consumption by using ESA and RHA to address environmental concerns. It also explores the potential benefits of admixtures improving concrete performance and reducing environmental pollution. A study is carried with and without impacts of admixture to find compressive strength of GP cubes. The cement has been replaced by RHA and ESA in the range of (2.5%+7.5%, 5%+5%, 7.5%+2.5) by weight of cement for M20 mix. The compressive strength (CS) and split tensile strength (STS) at 7days, 14 days and 28 days is obtained as 21 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 24 N/mm2 at 7.5%RHA+2.5%ESA and 2.3 at 7.5%RHA+2.5%ESA, 28 N/mm2 at 7.5%RHA+2.5%ESA and 2.8 at 7.5%ESA respectively with normal curing condition.

키워드

참고문헌

  1. Abd-Elrahman, M.H., Agwa, I.S., Mostafa, S.A. and Youssf, O. (2023), "Effect of utilizing peanut husk ash on the properties of ultra-high strength concrete", Constr. Build. Mater., 384, 131398. https://doi.org/10.1016/j.conbuildmat.2023.131398.
  2. Adamu, M., Haruna, S.I., Ibrahim, Y.E. and Alanazi, H. (2022), "Evaluation of the mechanical performance of concrete containing calcium carbide residue and nano silica using response surface methodology", Environ. Sci. Pollut. Res., 29(44), 67076-67102. https://doi.org/10.1007/s11356-022-20546-x.
  3. Adamu, M., Umar, I.K., Haruna, S.I., Ibrahim, Y.E., Alanazi, H. and Uche, O.A.U. (2022), "A soft computing technique for predicting flexural strength of concrete containing nano-silica and calcium carbide residue", Case Stud. Constr. Mater., 17, e01288. https://doi.org/10.1016/j.cscm.2022.e01288.
  4. Adeyanju, E., Okeke, C.A., Akinwumi, I. and Busari, A. (2020), "Subgrade stabilization using rice husk ash-based geopolymer (GRHA) and cement kiln dust (CKD)", Case Stud. Constr. Mater., 13, e00388. https://doi.org/10.1016/j.cscm.2020.e00388.
  5. Adhikary, S.K., Ashish, D.K. and Rudzionis, Z. (2022), "A review on sustainable use of agricultural straw and husk biomass ashes: Transitioning towards low carbon economy", Sci. Total Environ., 838, 156407. https://doi.org/10.1016/j.scitotenv.2022.156407.
  6. Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Amin, M. (2022), "Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete", J. Build. Eng., 56, 104773. https://doi.org/10.1016/j.jobe.2022.104773.
  7. Algaifi, H.A., Shahidan, S., Zuki, S.S.M., Ibrahim, M.H.W., Huseien, G.F. and Rahim, M.A. (2022), "Mechanical properties of coconut shell-based concrete: Experimental and optimisation modelling", Environ. Sci. Pollut. Res., 29, 21140-21155. https://doi.org/10.1007/s11356-021-17210-1.
  8. Alghamdi, H. (2022), "A review of cementitious alternatives within the development of environmental sustainability associated with cement replacement", Environ. Sci. Pollut. Res., 29(28), 42433-42451. https://doi.org/10.1007/s11356-022-19893-6.
  9. Aliu, A.O., Olalusi, O. B., Awoyera, P. O., and Kiliswa, M. (2023), "Evaluation of pozzolanic reactivity of maize straw ash as a binder supplement in concrete", Case Stud. Constr. Mater., 18, e01790. https://doi.org/10.1016/j.cscm.2022.e01790.
  10. Aliyu, M.K., Karim, A.T.A., Chan, C.M., Oyekanmi, A.A., Hossain, K. and Ismail, N. (2020), "Mobility of copper and its micro-structure characteristics in contaminated river sediment through stabilization by using cement and rice husk ash", Water Environ. J., 34, 229-238. https://doi.org/10.1111/wej.12521.
  11. Alqaisi, R., Le, T.M. and Khabbaz, H. (2020), "Applications of recycled sustainable materials and by-products in soil stabilization", Recent Thoughts in Geoenvironmental Engineering: Proceedings of the 3rd GeoMEast International Congress and Exhibition, Egypt 2019 on Sustainable Civil Infrastructures-The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE), Springer International Publishing, Cham, Switzerland.
  12. Alsharari, F., Khan, K., Amin, M.N., Ahmad, W., Khan, U., Mutnbak, M. and Yosri, A.M. (2022), "Sustainable use of waste eggshells in cementitious materials: An experimental and modeling-based study", Case Stud. Constr. Mater., 17, e01620. https://doi.org/10.1016/j.cscm.2022.e01620.
  13. Alyami, M., Hakeem, I.Y., Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2023), "Effect of agricultural olive, rice husk and sugarcane leaf waste ashes on sustainable ultra-high-performance concrete", J. Build. Eng., 72, 106689. https://doi.org/10.1016/j.jobe.2023.106689.
  14. Amin, M.N., Ahmad, W., Khan, K., Al-Hashem, M.N., Deifalla, A.F., and Ahmad, A. (2023), "Testing and modeling methods to experiment the flexural performance of cement mortar modified with eggshell powder", Case Stud. Constr. Mater., 18, e01759. https://doi.org/10.1016/j.cscm.2022.e01759.
  15. Amin, M.N., Ahmad, W., Khan, K., Nazar, S., Arab, A.M.A. and Deifalla, A.F. (2023), "Evaluating the relevance of eggshell and glass powder for cement-based materials using machine learning and SHapley Additive exPlanations (SHAP) analysis", Case Stud. Constr. Mater., 19, e02278. https://doi.org/10.1016/j.cscm.2023.e02278.
  16. Amin, M.N., Khan, S.A., Khan, K., Nazar, S., Arab, A.M.A. and Deifalla, A.F. (2023), "Promoting the suitability of rice husk ash concrete in the building sector via contemporary machine intelligence techniques", Case Stud. Constr. Mater., 19, e02357. https://doi.org/10.1016/j.cscm.2023.e02357.
  17. Calis, G., Yildizel, S.A., Erzin, S. and Tayeh, B.A. (2021), "Evaluation and optimisation of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study)", Case Stud. Constr. Mater., 15, e00625. https://doi.org/10.1016/j.cscm.2021.e00625.
  18. Chong, B.W., Othman, R., Jaya, R.P., Li, X., Hasan, M.R.M. and Abdullah, M.M.A.B. (2021), "Meta-analysis of studies on eggshell concrete using mixed regression and response surface methodology", J. King Saud Univ. Eng. Sci., 35(4), 279-287. https://doi.org/10.1016/j.jksues.2021.03.011.
  19. Diniz, H.A., dos Anjos, M.A., Rocha, A.K. and Ferreira, R.L. (2022), "Effects of the use of agricultural ashes, metakaolin and hydrated-lime on the behavior of self-compacting concretes", Constr. Build. Mater., 319, 126087. https://doi.org/10.1016/j.conbuildmat.2021.126087.
  20. Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Constr. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279.
  21. Ghanim, A.A.J., Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2023), "Effect of modified nano-titanium and fly ash on ultra-high-performance concrete properties", Struct. Concrete, 24(5), 6815-6832. https://doi.org/10.1002/suco.202300053.
  22. Golewski, G.L. (2022), "An extensive investigations on fracture parameters of concretes based on quaternary binders (QBC) by means of the DIC technique", Constr. Build. Mater., 351, 128823. https://doi.org/10.1016/j.conbuildmat.2022.128823.
  23. Golewski, G.L. (2022), "Comparative measurements of fracture toughgness combined with visual analysis of cracks propagation using the DIC technique of concretes based on cement matrix with a highly diversified composition", Theoret. Appl. Fract. Mech., 121, 103553. https://doi.org/10.1016/j.tafmec.2022.103553.
  24. Gupta, S. and Chaudhary, S. (2020), "State of the art review on supplementary cementitious materials in India-I: An overview of legal perspective, governing organizations, and development patterns", J. Clean. Prod., 261, 121203. https://doi.org/10.1016/j.jclepro.2020.121203.
  25. Hakeem, I.Y., Abd-Al Ftah, R.O., Tayeh, B.A. and Hafez, R.D.A. (2023), "Eggshell as a fine aggregate replacer with silica fume and fly ash addition in concrete: A sustainable approach", Case Stud. Constr. Mater., 18, e01842. https://doi.org/10.1016/j.cscm.2023.e01842.
  26. Hakeem, I.Y., Amin, M., Agwa, I.S., Abd-Elrahman, M.H. and Abdelmagied, M.F. (2023), "Using a combination of industrial and agricultural wastes to manufacture sustainable ultra-high-performance concrete", Case Stud. Constr. Mater., 19, e02323. https://doi.org/10.1016/j.cscm.2023.e02323.
  27. Hakeem, I.Y., Amin, M., Agwa, I.S., Abd-Elrahman, M.H., Ibrahim, O.M.O. and Samy, M. (2023), "Ultra-high-performance concrete properties containing rice straw ash and nano eggshell powder", Case Stud. Constr. Mater., 19, e02291. https://doi.org/10.1016/j.cscm.2023.e02291.
  28. Hakeem, I.Y., Amin, M., Agwa, I.S., Rizk, M.S. and Abdelmagied, M.F. (2023), "Effect of using sugarcane leaf ash and granite dust as partial replacements for cement on characteristics of ultra-high performance concrete", Case Stud. Constr. Mater., 19, e02266. https://doi.org/10.1016/j.cscm.2023.e02266.
  29. Hamada, H.M., Al-Attar, A., Shi, J., Yahaya, F., Al Jawahery, M.S. and Yousif, S.T. (2023), "Optimization of sustainable concrete characteristics incorporating palm oil clinker and nano-palm oil fuel ash using response surface methodology", Powd. Technol., 413, 118054. https://doi.org/10.1016/j.powtec.2022.118054.
  30. Hamada, H.M., Al-Attar, A.A., Tayeh, B. and Yahaya, F.B.M. (2022), "Optimizing the concrete strength of lightweight concrete containing nano palm oil fuel ash and palm oil clinker using response surface method", Case Stud. Constr. Mater., 16, e01061. https://doi.org/10.1016/j.cscm.2022.e01061.
  31. Han, Y., Lin, R. and Wang, X.Y. (2022), "Sustainable mixtures using waste oyster shell powder and slag instead of cement: Performance and multi-objective optimization design", Case Stud. Constr. Mater., 348, 128642. https://doi.org/10.1016/j.conbuildmat.2022.128642.
  32. Han, Y., Oh, S., Wang, X.Y. and Lin, R.S. (2021), "Hydration-strength-workability-durability of binary, ternary, and quaternary composite pastes", Mater., 15(1), 204. https://doi.org/10.3390/ma15010204.
  33. Hasan, M., Zaini, M.S.I., Yie, L.S., Masri, K.A., Jaya, R.P., Hyodo, M. and Winter, M.J. (2021), "Effect of optimum utilization of silica fume and eggshell ash to the engineering properties of expansive soil", J. Mater. Res. Technol., 14, 1401-1418. https://doi.org/10.1016/j.jmrt.2021.07.023.
  34. Hilal, N., Al Saffar, D.M. and Ali, T.K.M. (2021), "Effect of egg shell ash and strap plastic waste on properties of high strength sustainable self-compacting concrete", Arab. J. Geosci., 14, 1-11. https://doi.org/10.1007/s12517-021-06654-x.
  35. Jindal, B.B., Jangra, P. and Garg, A. (2020), "Effects of ultra fine slag as mineral admixture on the compressive strength, water absorption and permeability of rice husk ash based geopolymer concrete", Mater. Today: Proc., 32, 871-877. https://doi.org/10.1016/j.matpr.2020.04.219.
  36. Kamal, I., Ali, A. and Sherwani, A.F. (2021), "Optimization and modeling the impact of a green cementless binder and biogenic nanosilica on cement setting time", Mater. Today: Proc., 42, 2649-2655. https://doi.org/10.1016/j.matpr.2020.12.595.
  37. Kamaruddin, S., Goh, W.I., Abdul Mutalib, N.A.N., Jhatial, A.A., Mohamad, N. and Rahman, A.F. (2021), "Effect of combined supplementary cementitious materials on the fresh and mechanical properties of eco-efficient self-compacting concrete", Arab. J. Sci. Eng., 46, 10953-10973. https://doi.org/10.1007/s13369-021-05656-x.
  38. Khan, K., Ahmad, W., Amin, M.N. and Deifalla, A.F. (2023), "Investigating the feasibility of using waste eggshells in cement-based materials for sustainable construction", J. Mater. Res. Technol., 23, 4059-4074. https://doi.org/10.1016/j.jmrt.2023.02.057.
  39. Kumar, A., Kumar, R., Das, V., Jhatial, A.A. and Ali, T.H. (2021), "Assessing the structural efficiency and durability of burnt clay bricks incorporating fly ash and silica fume as additives", Case Stud. Constr. Mater., 310, 125233. https://doi.org/10.1016/j.conbuildmat.2021.125233.
  40. Maglad, A.M., Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2023), "Engineering properties of ultra-high strength concrete containing sugarcane bagasse and corn stalk ashes", J. Mater. Res. Technol., 23, 3196-3218. https://doi.org/10.1016/j.jmrt.2023.01.197.
  41. Mashri, M.O.M., Johari, M.A.M., Ahmad, Z.A. and Mijarsh, M.J.A. (2022), "Influence of milling process of palm oil fuel ash on the properties of palm oil fuel ash-based alkali activated mortar", Case Stud. Constr. Mater., 16, e00857. https://doi.org/10.1016/j.cscm.2021.e00857.
  42. Memon, M.J., Jhatial, A.A., Murtaza, A., Raza, M.S. and Phulpoto, K.B. (2021), "Production of eco-friendly concrete incorporating rice husk ash and polypropylene fibres", Environ. Sci. Pollut. Res., 28, 39168-39184. https://doi.org/10.1007/s11356-021-13418-3.
  43. Mostafa, S.A., Ahmed, N., Almeshal, I., Tayeh, B.A. and Elgamal, M.S. (2022), "Experimental study and theoretical prediction of mechanical properties of ultra-high-performance concrete incorporated with nanorice husk ash burning at different temperature treatments", Environ. Sci. Pollut. Res., 29(50), 75380-75401. https://doi.org/10.1007/s11356-022-20779-w.
  44. Mounika, G., Baskar, R. and Sri Kalyana Rama, J. (2022), "Rice husk ash as a potential supplementary cementitious material in concrete solution towards sustainable construction", Innov. Infrastr. Solut., 7(1), 51. https://doi.org/10.1007/s41062-021-00643-5.
  45. Murthi, P., Lavanya, V. and Poongodi, K. (2022), "Effect of eggshell powder on structural and durability properties of high strength green concrete for sustainability: A critical review", Mater. Today: Proc., 68, 1311-1318. https://doi.org/10.1016/j.matpr.2022.06.346.
  46. Murts, G.T., Ram, C. and Gebru, K.A. (2021), "Fabrication and characterization of cement based floor tiles using eggshell and plastic wastes as a low cost construction materials", Case Stud. Constr. Mater., 15, e00747. https://doi.org/10.1016/j.cscm.2021.e00747.
  47. Okonkwo, U.N., Ekeoma, E.C. and Ndem, H.E. (2023), "Exponential logarithmic models for strength properties of lateritic soil treated with cement and rice husk ash as pavement of low-cost roads", Int. J. Pavement Res. Technol., 16(2), 333-342. https://doi.org/10.1007/s42947-021-00134-x.
  48. Pamu, Y. and Alugubelli, S. (2023), "A comparative study of environmental impacts due to conventional and sustainable concrete", Mater. Today: Proc., 92, 112-120.https://doi.org/10.1016/j.matpr.2023.03.817.
  49. Pamu, Y. and SVSNDL, P. (2023), "An experimental analysis for clay bricks manufacturing with partial replacement of glass wool", Aust. J. Struct. Eng., 24(4), 1-16. https://doi.org/10.1080/13287982.2023.2197320.
  50. Poorveekan, K., Ath, K.M.S., Anburuvel, A. and Sathiparan, N. (2021), "Investigation of the engineering properties of cementless stabilized earth blocks with alkali-activated eggshell and rice husk ash as a binder", Constr. Build. Mater., 277, 122371. https://doi.org/10.1016/j.conbuildmat.2021.122371.
  51. Riyap, H.I., Banenzoue, C., Tchakoute, H.K., Nanseu, C.N. and Ruscher, C.H. (2021), "A comparative study of the compressive strengths and microstructural properties of geopolymer cements from metakaolin and waste fired brick as aluminosilicate sources", J. Korean Ceram. Soc., 58, 236-247. https://doi.org/10.1007/s43207-020-00097-y.
  52. Salami, B.A., Iqbal, M., Abdulraheem, A., Jalal, F.E., Alimi, W., Jamal, A. and Bardhan, A. (2022), "Estimating compressive strength of lightweight foamed concrete using neural, genetic and ensemble machine learning approaches", Cement Concrete Compos., 133, 104721. https://doi.org/10.1016/j.cemconcomp.2022.104721.
  53. Sarker, K., Shiuly, A. and Dutta, D. (2023), "Strength, durability and microstructure study of cow dung ash based cement for sustainable development", Innov. Infrastr. Solut., 8(5), 148. https://doi.org/10.1007/s41062-023-01116-7.
  54. Servi, S., Lotero, A., Silva, J.P.S., Bastos, C. and Consoli, N.C. (2022), "Mechanical response of filtered and compacted iron ore tailings with different cementing agents: Focus on tailings-binder mixtures disposal by stacking", Constr. Build. Mater., 349, 128770. https://doi.org/10.1016/j.conbuildmat.2022.128770.
  55. Shah, S.A.R., Kahla, N.B., Atig, M., Anwar, M.K., Azab, M. and Mahmood, A. (2023), "Optimization of fresh and mechanical properties of sustainable concrete composite containing ARGF and fly ash: An application of response surface methodology", Constr. Build. Mater., 362, 129722. https://doi.org/10.1016/j.conbuildmat.2022.129722.
  56. Shar, I.A., Memon, F.A., Bheel, N., Benjeddou, O. and Alwetaishi, M. (2023), "Effect of used engine oil on the mechanical properties and embodied carbon of concrete blended with wheat straw ash as cementitious material", Environ. Sci. Pollut. Res., 30(30), 75879-75893. https://doi.org/10.1007/s11356-023-27803-7.
  57. Sinkhonde, D., Rimbarngaye, A. and Kone, B. (2022), "A multi-image analysis suitable to characterise structural parameters of mineral and chemical admixtures for sustainable construction", Clean. Eng. Technol., 11, 100566. https://doi.org/10.1016/j.clet.2022.100566.
  58. Sorout, J., Raj, S., Kaur, D.P. and Lamba, P. (2023), "Waste-based bricks: evaluation of strength behaviour of bricks containing different waste materials as an additive", Water Air Soil Pollut., 234(7), 424. https://doi.org/10.1007/s11270-023-06438-x.
  59. Subburaj, V., Chokkalingam, R.B., Prabhu, P. and Balaji, V. (2023), "Preparation and characterization of biocement mortar containing silane-treated nano-Si3N4 prepared from rice husk ash", Silicon, 15(4), 1669-1677. https://doi.org/10.1007/s12633-022-02135-2.
  60. Subramaniam, D.N. and Sathiparan, N. (2022), "Comparative study of fly ash and rice husk ash as cement replacement in pervious concrete: Mechanical characteristics and sustainability analysis", Int. J. Pavement Eng., 24(2), 2075867. https://doi.org/10.1080/10298436.2022.2075867.
  61. Swaminathen, A.N., Kumar, C.V., Ravi, S.R. and Debnath, S. (2021), "Evaluation of strength and durability assessment for the impact of rice husk ash and metakaolin at high performance concrete mixes", Mater. Today: Proc., 47, 4584-4591. https://doi.org/10.1016/j.matpr.2021.05.449.
  62. Taher, S.M., Saadullah, S.T., Haido, J.H. and Tayeh, B.A. (2021), "Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand", Case Stud. Constr. Mater., 15, e00744. https://doi.org/10.1016/j.cscm.2021.e00744.
  63. Tayeh, B.A., Ahmed, S.M., and Hafez, R.D.A. (2023), "Sugarcane pulp sand and paper grain sand as partial fine aggregate replacement in environment-friendly concrete bricks", Case Stud. Constr. Mater., 18, e01612. https://doi.org/10.1016/j.cscm.2022.e01612.
  64. Tchakoute, H.K., Tchinda Mabah, D.E., Henning Ruscher, C., Kamseu, E., Andreola, F., Bignozzi, M.C. and Leonelli, C. (2020), "Preparation of low-cost nano and microcomposites from chicken eggshell, nano-silica and rice husk ash and their utilisations as additives for producing geopolymer cements", J. Asian Ceram. Soc., 8(1), 149-161. https://doi.org/10.1080/21870764.2020.1718860.
  65. Teara, A. and Ing, D.S. (2020), "Mechanical properties of high strength concrete that replace cement partly by using fly ash and eggshell powder", Phys. Chem. Earth Parts a/b/c, 120, 102942. https://doi.org/10.1016/j.pce.2020.102942.
  66. Wang, Y., AL-Huqail, A.A., Salimimoghadam, S., Jasim Mohammed, K., Jan, A., Ali, H.E. and Assilzadeh, H. (2022), "The metaheuristic optimization of the mechanical properties of sustainable energies using artificial neural networks and genetic algorithm: A case study by eggshell fine waste", Int. J. Energy Res., 46(15), 21338-21352. https://doi.org/10.1002/er.8255.
  67. Wang, Z., Li, M., Shen, L. and Wang, J. (2022), "Incorporating clay as a natural and enviro-friendly partial replacement for cement to reduce carbon emissions in peat stabilisation: An experimental investigation", Constr. Build. Mater., 353, 128901. https://doi.org/10.1016/j.conbuildmat.2022.128901.
  68. Waqar, A., Bheel, N., Shafiq, N., Othman, I., Khan, M.B., Mansoor, M.S. and Yaseen, G. (2023), "Effect of volcanic pumice powder ash on the properties of cement concrete using response surface methodology", J. Build. Pathol. Rehabilit., 8(1), 17. https://doi.org/10.1007/s41024-023-00265-7.
  69. Xuan, M.Y., Lin, R.S., Min, T.B. and Wang, X.Y. (2023), "Carbonation treatment of eggshell powder concrete for performance enhancement", Constr. Build. Mater., 377, 130814. https://doi.org/10.1016/j.conbuildmat.2023.130814.
  70. Zada, U., Jamal, A., Iqbal, M., Eldin, S.M., Almoshaogeh, M., Bekkouche, S.R. and Almuaythir, S. (2023), "Recent advances in expansive soil stabilization using admixtures: Current challenges and opportunities", Case Stud. Const. Mater., 18, e01985. https://doi.org/10.1016/j.cscm.2023.e01985.
  71. Zaid, O., Hashmi, S.R.Z., El Ouni, M.H., Martinez-Garcia, R., de Prado-Gil, J. and Yousef, S.E.A. (2023), "Experimental and analytical study of ultra-high-performance fiber-reinforced concrete modified with egg shell powder and nano-silica", J. Mater. Res. Technol., 24, 7162-7188. https://doi.org/10.1016/j.jmrt.2023.04.240.
  72. Zeyad, A.M., Johari, M.A.M., Alharbi, Y.R., Abadel, A.A., Amran, Y.M., Tayeh, B.A. and Abutaleb, A. (2021), "Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete", J. Build. Eng., 38, 102204. https://doi.org/10.1016/j.jobe.2021.102204.
  73. Zeyad, A.M., Magbool, H.M., Tayeh, B.A., de Azevedo, A.R.G., Abutaleb, A. and Hussain, Q. (2022), "Production of geopolymer concrete by utilizing volcanic pumice dust", Case Stud. Constr. Mater., 16, e00802. https://doi.org/10.1016/j.cscm.2021.e00802.