Acknowledgement
This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).
References
- Antonietti, P., Bruggi, M., Scacchi, S. and Verani M. (2017), "On the virtual element method for topology optimization on polygonal meshes: A numerical study", Comput. Mathem. Appl., 74, 1091-1109.
- Arslan, K. and Gunes, R. (2018), "Experimental damage evaluation of honeycomb sandwich structures with Al/B4c fgm face plates under high velocity impact loads", Compos. Struct., 202, 304-312. https://doi.org/10.1016/j.compstruct.2018.01.087.
- Banh, T.T., Lieu, Q.X., Kang, J., Ju, Y., Shin, S. and Lee, D. (2023c), "A novel robust stress-based multimaterial topology optimization model for structural stability framework using refined adaptive continuation method", Eng. Comput., 1-37.
- Banh, T.T., Lieu, X.Q., Lee, J., Kang, J. and Lee, D. (2023b), "A robust dynamic unified multi-material topology optimization method for functionally graded structures", Struct. Multidiscipl. Optimiz., 66. https://doi.org/10.1007/s00158-023-03501-3.
- Banh, T.T., Luu, G.N. and Lee, D. (2021b), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh, T.T., Luu, G.N. and Lee, D. (2023a), "A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities", Steel Compos. Struct., 48, 73-88. https://doi.org/10.12989/scs.2023.48.1.073.
- Banh, T.T., Luu, G.N., Lieu, X.Q., Lee, J., Kang, J. and Lee, D. (2021a), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41, 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
- Banh, T.T., Shin, S., Kang, J. and Lee, D. (2024a), "Frequencyconstrained topology optimization in incompressible multimaterial systems under design-dependent loads", Thin-Wall. Struct., 196, 111467. https://doi.org/10.1016/j.tws.2023.111467.
- Banh, T.T., Shin, S., Kang, J. and Lee, D. (2024b), "Comprehensive multi-material topology optimization for stress-driven design with refined volume constraint subjected to harmonic force excitation", Eng. Comput., https://doi.org/10.1007/s00366-023-01939-z.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using homogenization", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolation schemes in topology optimization", Archive Appl. Mech., 69. 635-654. https://doi.org/10.1007/s004190050248
- Cai, K., Cao, J., Shi, J., Liu, L. and Qin, Q.H. (2016), "Optimal layout of multiple bi-modulus materials", Struct. Multidiscipl. Optimiz., 53, 801-811. https://doi.org/10.1007/s00158-015-1365-2
- Chau, P.K.N., Chau, K.N., Ngo, T., Hackl, K. and Nguyen, X.H. (2018), "A polytree-based adaptive polygonal finite element method for multi-material topology optimization", Comput. Meth. Appl. Mech. Eng., 332, 712-739. https://doi.org/10.1016/j.cma.2017.07.035
- Hoang, V.N., Pham, T., Ho, D. and Nguyen, X.H. (2022), "Robust multiscale design of incompressible multi-materials under loading uncertainties", Eng. Comput., 38, 875-890. https://doi.org/10.1007/s00158-023-03501-3.
- Ilschner, B. (1996), "Processing-microstructure-property relationships in graded materials", J. Mech. Phys. Solids, 44, 647-656. https://doi.org/10.1016/0022-5096(96)00023-3.
- Kim, J.H. and H. Paulino, G.H. (2003), "An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models", Int. J. Numer. Meth. Eng., 58, 1457-1497. https://doi.org/10.1002/nme.819.
- Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-514. https://doi.org/10.1115/1.1467094.
- Kim, J.H. and Paulino, G.H. (2004), "Consistent formulations of the interaction integral method for fracture of functionally graded materials", J. Appl. Mech., 72, 351-364. https://doi.org/10.1115/1.1876395.
- Li D. and Kim I.Y. (2018), "Multi-material topology optimization for practical lightweight design", Struct. Multidiscipl. Optimiz., 58, 1081-1094. https://doi.org/10.1007/s00158-018-1953-z
- Lieu, X.Q. and Lee J. (2017a), "Multiresolution topology optimization using isogeometric analysis", Int. J. Numer. Meth. Eng., 112, 2025-2047. https://doi.org/10.1002/nme.5593.
- Lieu, X.Q. and Lee J. (2017b), "A multi-resolution approach for multi-material topology optimization based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 323, 272-302. https://doi.org/10.1016/j.cma.2017.05.009.
- Liu, P., Luo, Y. and Kang, Z. (2016), "Multi-material topology optimization considering interface behavior via XFEM and level set method", Comput. Meth. Appl. Mech. Eng., 308, 113-133. https://doi.org/10.1016/j.cma.2016.05.016
- Nguyen, M.N., Lee, D. and Kang, J., (2023), "Topology optimization with functionally graded multi-material for elastic buckling criteria", Steel Compos. Struct., 46, 33-51. https://doi.org/10.12989/scs.2023.46.1.033.
- Nguyen, X.H., Chau, K.N. and Chau K.N. (2019), "Polytopal composite finite elements", Comput. Methods Appl. Mech. Eng., 355, 405-437. https://doi.org/10.1016/j.cma.2019.06.030
- Paulino, G.H. and Silva, E.C.N. (2005), "Design of functionally graded structures using topology optimization", Mater. Sci. Forum, 492-493, 435-440. https://doi.org/10.4028/www.scientific.net/MSF.492-493.435
- Pedersen, N.L. (2000), "Maximization of eigenvalue using topology optimization", Struct. Multidiscipl. Optimiz., 20, 2-11. https://doi.org/10.1007/s001580050130.
- Radhika, N., Kamireddy, T., Kanithi, R. and Shivashankar, A. (2018), "Fabrication of Cu-Sn-Ni /SiC FGM for automotive applications: Investigation of its mechanical and tribological properties", Environ. Sci. Pollut. Res., 102, 1705-1716. https://doi.org/10.1007/s12633-017-9657-3.
- Sigmund, O. and Torquato, S. (1997), "Design of materials with extreme thermal expansion using a three-phase topology optimization method", J. Mech. Phys. Solids, 45. 1037-1067. https://doi.org/10.1016/S0022-5096(96)00114-7
- Smith, J.A., Mele, E., Rimington, R.P., Capel, A.J., Lewis, M.P., Sil- berschmidt, V.V. and Li, S. (2019), "Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications", J. Mech. Behavior Biomedic. Mater., 93, 130-142. https://doi.org/10.1016/j.jmbbm.2019.02.012.
- Stolpe, M. and Svanberg, K. (2001), "An alternative interpolation scheme for minimum compliance topology optimization", Struct. Multidiscipl. Optimiz., 22, 116-124. https://doi.org/10.1007/s001580100129.
- Svanberg, K. (1987), "The method of moving asymptotes - A new method for structural optimization", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207.
- Taheri, A.H. and Hassani, B. (2014), "Simultaneous isogeometrical shape and material design of functionally graded structures for optimal eigenfrequencies", Comput. Meth. Appl. Mech. Eng., 277, 46-80. https://doi.org/10.1016/j.cma.2014.04.014.
- Talischi, C., Paulino, G.H. and Pereira A. (2012), "PolyTop: A Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes", Struct. Multidiscipl. Optimiz., 45, 329-357. https://doi.org/10.1007/s00158-011-0696-x.
- Talischi, C., Paulino, G.H., Pereira, A. and Menezes I.F.M. (2009), "Polygonal finite elements for topology optimization: A unifying paradigm", Int. J. Numer. Meth. Eng., 82, 671-698.
- Tavakoli, R. and Mohseni, M. (2014), "Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation", Struct. Multidiscipl. Optimiz., 49, 621-642. http://dx.doi.org/10.1007/S00158- 013-0999- 1.
- Thomsen, J. (1992), "Topology optimization of structures composed of one or two materials", Struct. Optimiza., 66. 108-115. https://doi.org/10.1007/BF01744703
- Wang, Y., Luo, Z., Kang, Z. and Zhang, N. (2015), "A multimaterial level set-based topology and shape optimization method", Comput. Meth. Appl. Mech. Eng., 283, 1570-1586. https://doi.org/10.1016/j.cma.2014.11.002
- Wei, P. and Paulino, G.H. (2020), "A parameterized level set method combined with polygonal finite elements in topology optimization", Struct. Multidiscipl. Optimiz., 61, 1913-1928. https://doi.org/10.1007/s00158-019-02444-y
- Zhang, W., Feng, Z. and Cao, D. (2012), "Nonlinear dynamics analysis of aero engine blades", J. Dyn. Control, 10, 213-221. https://doi.org/10.1109/UKSIM.2011.48.
- Zhou, S.W. and Wang, M.Y. (2007), "Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transitiond", Struct. Multidiscipl. Optimiz., 33, 89-111. https://doi.org/10.1007/s00158-006-0035-9