DOI QR코드

DOI QR Code

Relationship between Compressive and Flexural Strengths of Early Strength Portland Cement Mortars Containing Limestone Powder

석회석 미분말이 혼입된 조강포틀랜드시멘트 모르타르의 압축강도와 휨강도의 관계

  • Received : 2024.03.13
  • Accepted : 2024.04.23
  • Published : 2024.05.30

Abstract

This study examines the relationship between the flexural and compressive strengths of early strength portland cement (ESPC) mortars containing limestone powder (LP). Nineteen different mortar mixtures were classified into three groups based on the blaine of the LP. The addition ratio (RLP) of LP for the partial replacement of ESPC varied from 0% to 30% in 5% increment for each group. Test results revealed that both the 28-day compressive strength and flexural strength of ESPC mortars decreased with an increase in RLP, with steeper decreases for mixtures with higher blaine of LP. This pattern was insignificantly affected by the curing condition. Flexural strength of ESPC mortars could be evaluated as the square root of the 28-day compressive strength. Based on regression analysis of the test data, empirical equations were proposed to assess the flexural strength gain of ESPC mortars containing LP.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 결과의 일부임. 과제번호: RS-2023-00263555

References

  1. ACI 318 (2019). Building code requirements for structural concrete and commentary (ACI 318-19), American Concrete Institute (ACI), Farmington Hills, Michigan, USA.
  2. Bang, J. W., Kwon, S. J., Shin, K. J., Chung, W. J., & Kim, Y. Y. (2015). Material properties of concrete produced with limestone blended cement, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(2), 125-132.
  3. Bonavetti, V. L., Rahhal, V. F., & Irassar, E. F. (2001). Studies on the carboaluminate formation in limestone filler-blended cements, Cement and Concrete Research, 31(6), 853-859. https://doi.org/10.1016/S0008-8846(01)00491-4
  4. Cho, I. S., Hur, Y. O., Min, T. B., & Lee, H. S. (2012). Study on the development of super-high-early-strength mortar using the hardening catalyst and high early strength cement, Proceedings of the Korea Institute of Building Construction, 12(2), 217-219.
  5. Choi, J. W., Cha, W. H., & Han, M. C. (2023). Effect of blaine fineness and substitution rate of limestone on the compressive strength and evaluation of carbon mission of limestone composite cement mortar, Journal of the Architectural Institute of Korea, 39(1), 305-312.
  6. Hossaina, M. U., Poon, C. S., Lo, I. M. C., & Cheng, J. C. P. (2017). Comparative LCA on using waste materials in the cement industry: a Hong Kong case study, Resources, Conservation and Recycling, 120, 199-208. https://doi.org/10.1016/j.resconrec.2016.12.012
  7. Jo, B. W., Choi, J. S., & Kim, K. T. (2013). A study on the strength properties of green mortar using limestone powder, Journal of Korean Institute of Resources Recycling, 22(3), 36-42.
  8. Jung, J. H. (2021). A basic study to use recycled limestone powder as a mixture for secondary concrete products, Journal of Korean Recycled Construction Resource Institute, 9(4), 413-418.
  9. Kho, K. T., Yoo, W. W., & Han, S. M. (2002). A resistance to sulfate attack of mortars containing limestone powder, Proceedings of the Korea Institute for Structural Maintenance and Inspection, 6(2), 325-330.
  10. Kim, D. J. (2017). Material Properties of Limestone Powder and Compressive Strength Development of Concrete Using Limestone Powder, Ms Thesis, Chung-Ang University. (In Korean)
  11. Korea Agency for Technology and Standards (2019). Polymer-Modified Cement Mortar, KS F 2476, Korean Standards Association, 1-27. (In Korean)
  12. Korea Agency for Technology and Standards (2021). Test Method of Density of Hydraulic Cement, KS L 5110, Korean Standards Association, 1-10. (In Korean)
  13. Korea Agency for Technology and Standards (2021). Portland Cement, KS L 5201, Korean Standards Association, 1-22. (In Korean)
  14. Korea Agency for Technology and Standards (2022). Cement-Test Methods-Determination of Strength, KS L ISO 679, Korean Standards Association, 1-38. (In Korean)
  15. Lee, S. H., Lee, J. I., Cho, J. W., & Cho, Y. K. (2012). Effect of limestone powder on early strength of portland cement, Proceedings of Korean Recycled Construction Resource Institute, 12(1), 200-202.
  16. Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete, Cement and Concrete Composites, 26(4), 347-357.
  17. Moon, G. D., Oh, S. W., Jung, S. H., & Choi, Y. C. (2017). Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete, Construction and Building Materials, 135, 129-136. https://doi.org/10.1016/j.conbuildmat.2016.12.189
  18. Park, C., Joe, S. H., Kim, K. S., Kim, W. S., & Lim, C. Y. (2023). An experimental study on the mortar compressive strength according to fineness and replacement rate of limestone powder, Journal of the Korean Ceramic Society, 26(4), 459-466.
  19. Tsivilis S., Chaniotakis E., Kakali, G., & Batis, G. (2002). An analysis of the properties of portland limestone cements and concrete, Cement and Concrete Composites, 24, 371-378.
  20. Wang, D., Shi, C., Farzadnia, N., & Jia, H. (2018). A review on effects of limestone powder on the properties of concrete, Construction and Building Materials, 192, 153-166. https://doi.org/10.1016/j.conbuildmat.2018.10.119
  21. Yoo, W. W. (2001). A Study on Strength Improvement and Resistance Against Sulfate Attack of Limestone Powder Added Mortar, Ms Thesis, Kum-Oh National University. (In Korean)