참고문헌
- Abdellaziz, M., Karray, M., Betegard, J., Locat, L., Ledoux ,C., Mompin, R. and Chekired, M. (2022), "Strain rate effect on static and dynamic behaviors of eastern Canada fine-grained soils", Can. Geotech. J., 59(7), https://doi.org/10.1139/cgj2021-0140.
- Adeyanju, E. and Okeke, C. (2019), "Clay soil stabilization using cement kiln dust", IOP Conf. Series: Materials Science and Engineering, 640, 012080. https://doi.org/10.1088/1757-899X/640/1/012080.
- Al-Gharbawi, A., Najemalden, A. and Fattah, M. (2023), "Expansive soil stabilization with lime, cement, and silica fume", Appl. Sci., 13(1), 436. https://doi.org/10.3390/app13010436.
- Alzubaidi, R. and Lafta, S. (2013), "Effect of strain rate on the strength characteristics of soil-lime mixture", Geotech. Geol. Eng., 31, 1317-1327. https://doi.org/10.1007/s10706-013-9653-3.
- Bagriacik, B., Altay, G. and Kayadelen, C. (2023), "Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste", Geomech. Eng., 34(4), 425-435. https://doi.org/10.12989/gae.2023.34.4.425.
- Chhun, T. and Yune, C. (2023), "Evaluation of strength characteristics of cement-stabilized soil using the electrical resistivity measurement", Geomech. Eng., 33(3), 261-269. https://doi.org/10.12989/gae.2023.33.3.261.
- Du, J., Zhou, A., Lin, X., Bu, Y. and Kodikara, J. (2020), "Revealing expansion mechanism of cement-stabilized expansive soil with different interlayer cations through molecular dynamics simulations", J. Phys. Chem., 124, 14672-14684.
- Ghadr, S., Langroudi, A. and Bahadori, H. Replacing C3S cement with PP fiber and nano biosilica in stabilization of organic clays", Geomech. Eng., 33(4), 401-414. https://doi.org/10.12989/gae.2023.33.4.401.
- Hu, T., Liu, D. and Chang, J. (2020), "Experimental study on strain rate effect of strength characteristics of unsaturated silty clay", Case Studies in Construction Mater., 12, https://doi.org/10.1016/j.cscm.2020.e00332.
- Hussain, A. (2002), "Effect of strain rate on strength of Al-Rustamia soil stabilized with cement dust. MSc thesis, building and construction department", University of Technology, Baghdad, Iraq.
- Hussain, M. and Hussaini, S. (2023), "Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation", Geomech. Eng., 35(5), 475-486. https://doi.org/10.12989/gae.2023.35.5.475.
- Kumar, A. and Singh, A. (2017), "Stabilization of soil using Cement Kiln Dust", Int. J. Innov. Res. Sci. Eng. Tech., 6(6), 11631- 11637.
- Li, S., Huang, M., Cui, M., Lin, P., Xu, L. and Xu, K. (2023), "Stabilization of cement-soil utilizing microbially induced carbonate precipitation", Geomech. Eng., 35(1), 95-108. https://doi.org/10.12989/gae.2023.35.1.095.
- Liu1, L., Wang, S. and Yang, W. (2022), "Strain rate efects on characteristic stresses and acoustic emission properties of granite under quasi-static compression", Front. Earth Sci., 10, https://doi.org/10.3389/feart.2022.960812.
- Maichin, P., Jitsangiam, P., Nongnuang, T., Boonserm, K., Nusit, K., Pra-ai, S., Binaree, T. and ke Aryupong, C. (2021), "Stabilized high clay content lateritic soil using cement-FGD gypsum mixtures for road subbase applications", Materials, 14(8), 1858. https://doi.org/10.3390/ma14081858.
- Mamo, B., Banoth, K. and Dey, A. (2015), "Effect of strain rate on shear strength parameter of sand", Proceedings of the Indian Geotechnical Conference, Pune, India.
- Mohammed, S., Dira2te, D., Dasho, D., Verma, R., Pampana, V., Sangalang, R., Koshuma, A. and Ayalew, A. (2022), "An inclusive study on the effect of strain rate on the stress-strain behavior and the undrained shear strength of clay soils in Kombolcha, Ethiopia", Eng. Tech. Appl. Sci. Res., 12(1), 8107-8113. https://doi.org/10.48084/etasr.4626
- Mukherjee, M. and Pathak, S. (2023), "Rate-dependent shearing response of Toyoura sand addressing the influence of initial density and confinement: A visco-plastic constitutive approach", Geomech. Eng., 34(2), 197-208. https://doi.org/10.12989/gae.2023.34.2.197.
- Nanda, S., Sivakumar, V., Hoyer, P., Bradshaw, A., Gavin, K.G., Gerkus, H., Jalilvand, S., Gilbert, R.B., Doherty, P. and Fanning, J. (2017), "Effects of strain rates on the undrained shear strength of Kaolin", Geotech. Test. J., 40(6), 951-962. https://doi.org/10.1520/GTJ20160101.
- Pandey, A. and Rabbani, A. (2017), "Soil stabilization using cement", Int. J. Civil Eng. Tech., 8(6), 316-322.
- Pereira, L., Godinho, L. and Branco, F. (2023), "Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks", Geomech. Eng., 33(6), 611-624. https://doi.org/10.12989/gae.2023.33.6.611.
- Sabbar, A., Chegenizadeh, A. and Nikraz, H. (2017), "Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures", Int. J. Geotech. Geol. Eng., 11(3).
- Shabani, K., Bahmani, M., Fatehi, H. and Chang, I. (2022), "Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named Serish", Geomech. Eng., 29(5), 535-548. https://doi.org/10.12989/gae.2022.29.5.535.
- Solihu, H. (2020), "Cement soil stabilization as an improvement technique for rail track subgrade, and highway subbase and base courses", A Review J. Civil Environ. Eng., 10(3).
- Tahsin, A., El-Sherbiny, R. and Salem, A. (2020), "Effect of starin of loading on tensile strength and stiffness of polyester geogrids", J. Al-Azhar Univ. Eng. Sector, 15(55), 573-583. https://doi.org/10.21608/auej.2020.87874
- Zhou, J., Zhu, C., Ren, J., Lu, X., Ma, C. and Li, Z. (2022), "Dynamic response of coal and rocks under high strain rate", Geomech. Eng., 29(4), 451-461. https://doi.org/10.12989/gae.2022.29.4.451.
- Zhou, S., Zhou, D., Zhang, Y. and Wang, W. (2019), "Study on physical-mechanical properties and microstructure of expansive soil stabilized with fly ash and lime", Adv..Civil Eng., 2019.
- Zhu, Q., Jin, Y., Shang, X. and Chen, T. (2019), "A 1D model considering the combined effect of strain-rate and temperature for soft soil", Geomech. Eng.,18(2), 133-140. https://doi.org/10.12989/gae.2019.18.2.133.